-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDescr.R
225 lines (180 loc) · 8.52 KB
/
Descr.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
#Caricamento librerie
library(readxl)
library(lipidr)
library(tidyverse)
library(FactoMineR)
library(factoextra)
#####
#Upload dati + aggiustamenti nomenclatura + nomenclatura
data <- read_excel("22QT37 Results_lipidomica rielab_26.04.2023.xlsx",
sheet = "Results TOT (2)")
data$Ontology <- gsub("Ether DG","EtherDG", data$Ontology)
classi <- read_excel("22QT37 Results_lipidomica rielab_26.04.2023.xlsx")
swiss_lipids <- read_tsv(file = "lipids.tsv", col_names = T)
background <- merge(data,swiss_lipids,by.x = "Formula bruta", by.y = "Formula (pH7.3)")
background <- background |> filter(Level == "Species")
background$`Metabolite name` <- gsub("\\|.*", "", background$`Metabolite name`) #rimuovo tutto il supplementary
background$`Metabolite name` <- sub(";(O\\d*)", "(\\1)", background$`Metabolite name`)
background$`Metabolite name` <- sub(" O-", "O ", background$`Metabolite name`)
background$`Metabolite name` <- sub(" P-", "P ", background$`Metabolite name`)
background$`Metabolite name` <- sub("-FA", "/", background$`Metabolite name`)
background$`Metabolite name` <- gsub("\\|.*", "", background$`Metabolite name`) #rimuovo tutto il supplementary
data$`Metabolite name` <- gsub("\\|.*", "", data$`Metabolite name`) #rimuovo tutto il supplementary
data$`Metabolite name` <- sub(";(O\\d*)", "(\\1)", data$`Metabolite name`)
data$`Metabolite name` <- sub(" O-", "O ", data$`Metabolite name`)
data$`Metabolite name` <- sub(" P-", "P ", data$`Metabolite name`)
data$`Metabolite name` <- sub("-FA", "/", data$`Metabolite name`)
data$`Metabolite name` <- gsub("\\|.*", "", data$`Metabolite name`)
data[,9:24] <- log(data[,9:24]) #log transformation
#Creazione dataset informazione clinica
annotations <- names(data)[9:24]
data_clin <- data.frame(Sample = annotations)
data_clin$Group <- sub(".*_.*_(.*)", "\\1", data_clin$Sample)
data_clin$Group <- factor(data_clin$Group)
Dati_anonimizzati_OB_Lipidomica <- read_excel("Dati anonimizzati_OB_Lipidomica.xlsx")
data_clin <- cbind(data_clin, Dati_anonimizzati_OB_Lipidomica[,3:6])
data_clin$Età <- round(data_clin$Età)
names(data_clin)[6] <- "BMI"
rm(annotations)
#####
#Analisi multivariata
data_pca <- data |> select(-c(1:6))
pca0 <- PCA(data_pca, scale.unit = T, graph = T, quali.sup = 1:2, )
fviz_eig(pca0)
fviz_pca_biplot(pca0, geom = "point", col.var = "black", addEllipses = F,
col.ind = "darkgoldenrod1",alpha.ind = 0.4, label = c("ind", "ind.sup", "var"),
repel = T, title = "", axes = c(1,2))
#Transposta
rownames(data_new) <- data_new$`Metabolite name`
data_new <- t(data_new)
data_new <- data_new[-c(1:2),]
data_new <- as.data.frame(data_new)
data_new[] <- lapply(data_new, as.numeric)
data_new <- cbind(data_new, data_clin$Group)
pca1 <- PCA(data_new, scale.unit = T, graph = T, quali.sup = 823)
fviz_eig(pca1)
fviz_pca_biplot(pca1, axes = c(1,2), geom = "point",
col.var = "black" , addEllipses = F,
habillage = data_clin$Group,
alpha.ind = 1, alpha.var = 0.05, label = c("ind"),
repel = T, title = "PCs 1 and 2", geom.ind = c("text", "point"))
fviz_pca_biplot(pca1, axes = c(2,3), geom = "point",
col.var = "black", addEllipses = F,
habillage = data_clin$Group,
alpha.ind = 1, alpha.var = 0.05, label = c("ind"),
repel = T, title = "PCs 2 and 3", geom.ind = c("text", "point"))
#####
#Analisi univariata con LipidR
data_lipidr <- data |> select(-c(1:6,8))
d <- as_lipidomics_experiment(data_lipidr, logged = T, normalized = T)
d <- add_sample_annotation(d, data_clin)
rowData(d)$Class <- data$Ontology
plot_lipidclass(d, "boxplot") #distribuzione dei valori di area per ogni classe di lipidi
OWvsNW <- de_analysis(d, OW-NW)
OBvsNW <- de_analysis(d, OB-NW)
SVvsNW <- de_analysis(d, SV-NW)
tmp <- de_analysis(d, OB-NW,OW-NW, SV-NW)
plot_results_volcano(tmp)
tmp2 <- merge(tmp,classi,by.x="Class",by.y="Abbreviation")
tmp3 <- tmp2 |> select(-`Lipid subclass`,-Class) |> relocate(Categories, .after = Molecule) |>
rename(Class = Categories)
plot_results_volcano(tmp3)
#OW vs NW
plot_results_volcano(OWvsNW)
OWvsNW_merged <- merge(OWvsNW,background,
by.x="Molecule", by.y = "Metabolite name")
OWvsNW_merged <- OWvsNW_merged |>
filter(logFC > 1 & adj.P.Val <= 0.05) |>
select(`Abbreviation*`, adj.P.Val)
OWvsNW_merged <- merge(OWvsNW,background,
by.x="Molecule", by.y = "Metabolite name") #devo ricaricare il precedente dataset
OWvsNW_merged_down <- OWvsNW_merged |>
filter(logFC < -1 & adj.P.Val <= 0.05) |>
select(`Abbreviation*`, adj.P.Val)
#OB vs NW
plot_results_volcano(OBvsNW)
OBvsNW_merged <- merge(OBvsNW, background,
by.x="Molecule", by.y="Metabolite name")
OBvsNW_merged <- OBvsNW_merged |>
filter(logFC > 1 & adj.P.Val <= 0.05) |>
select(`Abbreviation*`, adj.P.Val)
OBvsNW_merged <- merge(OBvsNW, background,
by.x="Molecule", by.y="Metabolite name")
OBvsNW_merged_down <- OBvsNW_merged |>
filter(logFC < -1 & adj.P.Val <= 0.05) |>
select(`Abbreviation*`, adj.P.Val)
#SV vs NW
plot_results_volcano(SVvsNW)
SVvsNW_merged <- merge(SVvsNW, background,
by.x="Molecule", by.y="Metabolite name")
SVvsNW_merged <- SVvsNW_merged |>
filter(logFC > 1 & adj.P.Val <= 0.05) |>
select(`Abbreviation*`, adj.P.Val)
SVvsNW_merged <- merge(SVvsNW, background,
by.x="Molecule", by.y="Metabolite name")
SVvsNW_merged_down <- SVvsNW_merged |>
filter(logFC < -1 & adj.P.Val <= 0.05) |>
select(`Abbreviation*`, adj.P.Val)
######
#prova nuovo grafico enrichment
library(readr)
OWvsNWup_enrich <- read_csv("LION/OWvsNWup/LION-enrichment-job2.csv")
OWvsNWup_enrich$Ratio <- OWvsNWup_enrich$Significant / 336
OWvsNWup_enrich <- OWvsNWup_enrich |> rename(p.value = "p-value") |>
mutate(Condition = "OW")
OWvsNWdown_enrich <- read_csv("LION/OWvsNWdown/LION-enrichment-job3.csv")
OWvsNWdown_enrich$Ratio <- OWvsNWdown_enrich$Significant / 377
OWvsNWdown_enrich <- OWvsNWdown_enrich |> rename(p.value = "p-value") |>
mutate(Condition = "OW")
###
OBvsNWup_enrich <- read_csv("LION/OBvsNWup/LION-enrichment-job1.csv")
OBvsNWup_enrich$Ratio <- OBvsNWup_enrich$Significant / 345
OBvsNWup_enrich <- OBvsNWup_enrich |> rename(p.value = "p-value") |>
mutate(Condition = "OB")
OBvsNWdown_enrich <- read_csv("LION/OBvsNWdown/LION-enrichment-job2.csv")
OBvsNWdown_enrich$Ratio <- OBvsNWdown_enrich$Significant / 384
OBvsNWdown_enrich <- OBvsNWdown_enrich |> rename(p.value = "p-value") |>
mutate(Condition = "OB")
###
SVvsNWup_enrich <- read_csv("LION/SVvsNWup/LION-enrichment-job3.csv")
SVvsNWup_enrich$Ratio <- SVvsNWup_enrich$Significant / 295
SVvsNWup_enrich <- SVvsNWup_enrich |> rename(p.value = "p-value") |>
mutate(Condition = "SV")
SVvsNWdown_enrich <- read_csv("LION/SVvsNWdown/LION-enrichment-job4.csv")
SVvsNWdown_enrich$Ratio <- SVvsNWdown_enrich$Significant / 407
SVvsNWdown_enrich <- SVvsNWdown_enrich |> rename(p.value = "p-value") |>
mutate(Condition = "SV")
allUP <- rbind(OWvsNWup_enrich,OBvsNWup_enrich,SVvsNWup_enrich)
allUP <- allUP |> filter(p.value <= 0.05)
allUP$Condition <- factor(allUP$Condition, levels = c("OW", "OB", "SV"))
ggplot(data = allUP, aes(x = Condition, y = Discription,
color = Ratio, size = Significant)) +
geom_point() +
scale_color_gradient(low = "blue", high = "red") +
geom_text(aes(label = round(Ratio, 3)), hjust = -0.4, vjust = 0.5, size = 3)+
theme_bw() +
ylab("") +
xlab("") +
ggtitle("LOEnA dotplot: Up-regulated")
allDOWN <- rbind(OWvsNWdown_enrich,OBvsNWdown_enrich,SVvsNWdown_enrich)
allDOWN <- allDOWN |> filter(p.value <= 0.05)
allDOWN$Condition <- factor(allDOWN$Condition, levels = c("OW", "OB", "SV"))
ggplot(data = allDOWN, aes(x = Condition, y = Discription,
color = -log2(Ratio), size = Significant)) +
geom_point() +
scale_color_gradient(low = "blue", high = "red") +
geom_text(aes(label = round(-log2(Ratio), 3)), hjust = -0.4, vjust = 0.5, size = 3) +
theme_bw() +
ylab("") +
xlab("") +
ggtitle("LOEnA dotplot: Down-regulated")
#questo serve solo per visualizzare un singolo listato di lipidi
ggplot(data = OWvsNWup_enrich, aes(x = Ratio, y = reorder(Discription, p.value),
color = p.value, size = Significant)) +
geom_point() +
scale_color_gradient(low = "blue", high = "red") +
geom_text(aes(label = round(p.value, 3)), hjust = -0.2, vjust = 0.5, size = 4) +
theme_bw() +
ylab("") +
xlab("") +
ggtitle("LOEn analysis")