-
Notifications
You must be signed in to change notification settings - Fork 1
/
train_bert_vit.py
247 lines (209 loc) · 10.2 KB
/
train_bert_vit.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
# -*- coding: utf-8 -*-
import torch
import argparse
from models.bert_vit import BertViTQPicModel
from transformers import AutoTokenizer
from dataset.bert_vit_dataset import (
read_qpic_line, collect_qpic_data
)
from models.module_utils import get_lr_schedule_fn
import numpy as np
import torch.optim as optim
import time
from utils import (
time_since, union_metrics, average_metrics,
load_file, dump_file
)
import os
import torch.distributed as dist
from queue import Queue
import threading
import random
import deepspeed
def gen_train_data(thread_id, qu, args, lock):
tokenizer_thread = AutoTokenizer.from_pretrained("bert-base-chinese")
train_dir = os.path.abspath(args.train_dir_path)
train_files = [file_ for d, file_ in enumerate(os.listdir(train_dir)) if d % dist.get_world_size() == dist.get_rank()]
if thread_id == 0:
print('rank: {}, train_files: {}'.format(dist.get_rank(), train_files))
data_list = []
while True:
random.shuffle(train_files)
for file_ in train_files:
filepath = os.path.join(train_dir, file_)
i = -1
with open(filepath, 'r', encoding='utf-8') as f:
for line in f:
i += 1
if i % args.num_thread != thread_id:
continue
try:
data = read_qpic_line(line, tokenizer_thread)
if data is None:
continue
except Exception as e:
print('read data exception: ', e)
continue
data_list.append(data)
if len(data_list) >= args.batch_size:
batch = data_list[:args.batch_size]
batch = collect_qpic_data(batch,)
data_list = data_list[args.batch_size:]
lock.acquire()
qu.put(batch)
lock.release()
def reduce_tensor(tensor):
rt = tensor.clone()
dist.all_reduce(rt, op=dist.ReduceOp.SUM)
rt /= args.world_size
return rt
def train(model, inputs):
loss = model(**inputs)
model.backward(loss)
model.step()
outputs = {
'loss': loss,
}
return outputs
def run():
global args, global_step
args.distributed = True
args.gpu = args.local_rank
args.world_size = dist.get_world_size()
tokenizer = AutoTokenizer.from_pretrained("bert-base-chinese")
args.vocab_size = tokenizer.vocab_size
model = BertViTQPicModel(args)
load_model_path = os.path.abspath(args.load_model_path)
if os.path.exists(load_model_path):
model = load_file(load_model_path, model, args)
print('{} model load succeed from {}'.format(model.__class__.__name__, load_model_path))
else:
print('{} model not exist in {}'.format(model.__class__.__name__, load_model_path))
if args.local_rank == 0:
print(model)
print('num. model params: {}, num. training params: {}'.format(
sum(p.numel() for p in model.parameters()),
sum(p.numel() for p in model.parameters() if p.requires_grad)
))
lr_schedule_fn = get_lr_schedule_fn(args.lr_scheduler_name)
global_step = args.global_step
train_loader_size = args.train_loader_size
save_steps = args.save_steps
global_epoch = global_step // train_loader_size
args.num_train_steps = train_loader_size * args.epochs
optimizer = optim.Adam(model.parameters(), lr=args.lr)
model, optimizer, _, _ = deepspeed.initialize(
args=args, model=model, optimizer=optimizer
)
args.batch_size = model.train_micro_batch_size_per_gpu()
if args.local_rank == 0:
print(args)
lock = threading.Lock()
qu = Queue(args.queue_size)
for t in range(args.num_thread):
p = threading.Thread(target=gen_train_data, args=(t, qu, args, lock))
p.start()
time.sleep(10)
for i in range(global_epoch, args.epochs):
model.train()
st = time.time()
train_metrics, train_steps = None, 0
j = -1
if global_step > i * train_loader_size:
j = global_step % train_loader_size
while j < train_loader_size:
try:
inputs = qu.get(block=True, timeout=60)
qu.task_done()
except Exception as e:
print('rank: {}, exception: {}'.format(args.local_rank, e))
break
j += 1
if j < 1 and args.local_rank == 0:
print(inputs)
inputs = { k:inputs[k].to(args.gpu) for k in inputs }
train_m = train(model, inputs)
train_metrics = union_metrics(train_metrics, train_m)
train_steps += 1
global_step += 1
torch.cuda.synchronize()
new_lr = args.lr
if lr_schedule_fn is not None:
new_lr = args.lr * lr_schedule_fn(global_step / args.num_train_steps, args.warmup_proportion)
for param_group in optimizer.param_groups:
param_group['lr'] = new_lr
if (j+1) % args.print_every == 0:
train_metrics = average_metrics(train_metrics, train_steps)
train_metrics = { k: train_metrics[k].item() for k in train_metrics }
if args.local_rank == 0:
print('Epoch: {}, step: {} / {}, {}, train loss: {:.4f}, lr: {:.10f}'.format(
i+1, j+1, train_loader_size, time_since(st, (j+1) / train_loader_size), train_metrics['loss'],
optimizer.param_groups[0]['lr'],
))
train_metrics = None
train_steps = 0
if global_step % save_steps == 0:
if args.local_rank != 0:
dist.barrier()
if args.local_rank == 0:
save_model_path = os.path.join(
os.path.abspath(args.model_save_directory),
'checkpoint-{}.pt'.format(global_step)
)
output = {}
for name, param in model.module.named_parameters():
output[name] = param.data.cpu().numpy()
dump_file(output, save_model_path)
print('Succeed save model in {}'.format(save_model_path))
if args.local_rank == 0:
dist.barrier()
model.train()
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='add argument to lstm trainer')
parser.add_argument('--hidden-dim', type=int, default=768)
parser.add_argument('--bert-config-file', type=str, default='configs/config_bert_vit.json')
parser.add_argument('--text-encoder-model', type=str, default='bert-base-chinese')
parser.add_argument('--vit-encoder-model', type=str, default='google/vit-base-patch16-224-in21k')
parser.add_argument('--load-model-path', type=str, default='./save_checkpoints/bert_vit_base_models/checkpoint-best.pt')
parser.add_argument('--model-save-directory', type=str, default='./save_checkpoints/bert_vit_base_models')
parser.add_argument('--train-dataset-path', type=str, default='./data/train')
parser.add_argument('--train-dir-path', type=str, default='./data/train_dir')
parser.add_argument('--tensorboard-dir', type=str, default='./logs/bert_vit_base_models')
parser.add_argument('--num-thread', type=int, default=20)
parser.add_argument('--queue-size', type=int, default=200)
parser.add_argument('--lr_schedule', type=str, default='LE', help='Choices LE, EE, EP (L: Linear, E: Exponetial, P: Polynomial warmup and decay)')
parser.add_argument('--lr_offset', type=float, default=0.0, help='Offset added to lr.')
parser.add_argument("--cpu_optimizer", default=False, action='store_true',help="Whether to use cpu optimizer for training")
parser.add_argument('--lr', type=float, default=1e-5, help='learning rate')
parser.add_argument('--lr-scheduler-name', type=str, default='warmup_linear', help='learning rate scheduler name')
parser.add_argument('--warmup-proportion', type=float, default=0.001, help='learning rate warmup proportion')
parser.add_argument('--epochs', type=int, default=50, help='maximum epochs to train')
parser.add_argument('--batch-size', type=int, default=6, help='batch size to train/valid')
parser.add_argument('--print-every', type=int, default=10, help='every steps to print train log')
parser.add_argument('--global-step', type=int, default=0, help='train procedure global step')
parser.add_argument('--train-loader-size', type=int, default=180, help='train loader size')
parser.add_argument('--save-steps', type=int, default=60, help='save model steps')
parser.add_argument('--max-grad-norm', type=float, default=1.0, help='max grad norm')
parser.add_argument("--weight-decay-rate", default=0.01, type=float, help='weight_decay_rate')
parser.add_argument('--seed', type=int, default=42)
parser.add_argument('--deterministic', action='store_true')
parser.add_argument('--local_rank', type=int, default=0)
parser.add_argument('--sync_bn', action='store_true')
parser.add_argument('--opt-level', type=str, default='O2')
parser.add_argument('--loss-scale', type=int, default=None)
parser.add_argument("--deepspeed_sparse_attention", default=False, action='store_true',help="Whether to use sparse attention for training")
parser.add_argument('--job_name',type=str,default=None,help="This is the path to store the output and TensorBoard results.")
parser.add_argument('--deepspeed_transformer_kernel', default=False, action='store_true', help='Use DeepSpeed transformer kernel to accelerate.')
parser = deepspeed.add_config_arguments(parser)
args = parser.parse_args()
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
torch.cuda.manual_seed_all(args.seed)
deepspeed.init_distributed()
if args.local_rank == 0:
# print(args)
model_save_directory = os.path.abspath(args.model_save_directory)
if not os.path.exists(model_save_directory):
os.makedirs(model_save_directory, exist_ok=True)
run()