forked from facebookresearch/CompilerGym
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathe_greedy.py
111 lines (94 loc) · 4.15 KB
/
e_greedy.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
"""ϵ-greedy policy for LLVM codesize."""
import logging
import random
from concurrent.futures import ThreadPoolExecutor, as_completed
from typing import NamedTuple
from absl import flags
from compiler_gym.envs import CompilerEnv, LlvmEnv
from compiler_gym.leaderboard.llvm_instcount import eval_llvm_instcount_policy
flags.DEFINE_float(
"epsilon", 0, "The ratio of patience to the size of the action space. "
)
FLAGS = flags.FLAGS
class RewardAction(NamedTuple):
"""An action -> reward tuple for a single step()."""
# Use reward as the element in the tuple as the reward is used for ordering.
reward: float
action: int
def select_best_action(env: CompilerEnv, executor: ThreadPoolExecutor) -> RewardAction:
"""Determine the best action by trying all possible options and ranking them."""
def eval_action(fkd: CompilerEnv, action: int) -> RewardAction:
"""Evaluate the given action."""
try:
_, reward, _, _ = fkd.step(action)
finally:
fkd.close()
return RewardAction(reward=reward, action=action)
# Select the best action using the reward that the action produces, then
# action index as a tie-breaker. Do this by creating n forks of the
# environment, one for every action, and evaluting the actions in parallel
# threads. Note that calls to fork() occur in the main thread for thread
# safety in case of environment restart.
futures = (
executor.submit(eval_action, env.fork(), action)
for action in range(env.action_space.n)
)
best_reward_action = RewardAction(reward=-float("inf"), action=0)
for future in as_completed(futures):
reward_action: RewardAction = future.result()
if reward_action > best_reward_action:
best_reward_action = reward_action
return best_reward_action
def e_greedy_search(env: LlvmEnv) -> None:
"""Run an ϵ-greedy search on an environment."""
step_count = 0
with ThreadPoolExecutor(max_workers=FLAGS.nproc) as executor:
while True:
step_count += 1
if random.random() < FLAGS.epsilon:
# Exploratory step. Randomly select and apply an action.
action = env.action_space.sample()
_, reward, done, _ = env.step(action)
logging.debug(
"Step %d, exploratory action %s, reward %.4f, cumulative %.4f",
step_count,
env.action_space.flags[action],
reward,
env.episode_reward,
)
else:
# Select the best reward and apply it, or terminate the search
# if no positive reward is attainable.
best = select_best_action(env, executor)
if best.reward <= 0:
logging.debug(
"Greedy search terminated after %d steps, "
"no further reward attainable",
step_count,
)
done = True
else:
_, reward, done, _ = env.step(best.action)
logging.debug(
"Step %d, greedy action %s, reward %.4f, cumulative %.4f",
step_count,
env.action_space.flags[best.action],
reward,
env.episode_reward,
)
if env.reward_space.deterministic and reward != best.reward:
logging.warning(
"Action %s produced different reward on replay, %.4f != %.4f",
env.action_space.flags[best.action],
best.reward,
reward,
)
# Stop the search if we have reached a terminal state.
if done:
return
if __name__ == "__main__":
eval_llvm_instcount_policy(e_greedy_search)