forked from bouthilx/ift6266kaggle
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_transform.py
105 lines (80 loc) · 2.07 KB
/
test_transform.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
from scipy import ndimage, misc
import pylab as pl
import numpy as np
lena = misc.lena()
lx, ly = lena.shape
show = [#1,
#2,
#3,
#4,
#5,
6,
#7,
8,
9,
10,
#11,
#12,
#13,
14]
def zoom(im,c):
y = np.random.rand(*im.shape)
im = ndimage.zoom(im,c)
print c
if c < 1.000000:
y[(y.shape[0]-im.shape[0])/2.0:-(y.shape[0]-im.shape[0])/2.0,
(y.shape[1]-im.shape[1])/2.0:-(y.shape[1]-im.shape[1])/2.0] = im
else:
y = im[(im.shape[0]-y.shape[0])/2.0:-(im.shape[0]-y.shape[0])/2.0,
(im.shape[1]-y.shape[1])/2.0:-(im.shape[1]-y.shape[1])/2.0]
return y
if 1 in show:
pl.imshow(lena,cmap="gray")
pl.show()
if 2 in show:
pl.imshow(lena[lx/4:-lx/4,ly/4:-ly/4],cmap="gray")
pl.show()
if 3 in show:
pl.imshow(np.fliplr(lena),cmap="gray")
pl.show()
if 4 in show:
pl.imshow(ndimage.rotate(lena,45),cmap="gray")
pl.show()
if 5 in show:
pl.imshow(ndimage.rotate(lena,45,reshape=False),cmap="gray")
pl.show()
if 6 in show:
print 6
pl.imshow(ndimage.gaussian_filter(lena,sigma=3),cmap="gray")
pl.show()
if 7 in show:
print 7
pl.imshow(ndimage.gaussian_filter(lena,sigma=5),cmap="gray")
pl.show()
if 8 in show:
print 8
pl.imshow(ndimage.uniform_filter(lena,size=11),cmap="gray")
pl.show()
if 9 in show:
print 9
blurred_l = ndimage.gaussian_filter(lena, 3)
filter_blurred_l = ndimage.gaussian_filter(blurred_l, 1)
alpha = 30
sharpened = blurred_l + alpha * (blurred_l - filter_blurred_l)
pl.imshow(sharpened,cmap="gray")
pl.show()
if 10 in show:
print 10
noisy = lena + 0.4 * lena.std() * np.random.random(lena.shape)
gauss_denoised = ndimage.gaussian_filter(noisy, 2)
med_denoised = ndimage.median_filter(noisy, 3)
pl.imshow(med_denoised,cmap="gray")
pl.show()
if 11 in show:
print "11"
pl.imshow(zoom(lena,2),cmap="gray")
pl.show()
if 12 in show:
print "12"
pl.imshow(zoom(lena,0.5),cmap="gray")
pl.show()