-
Notifications
You must be signed in to change notification settings - Fork 42
/
reproduce.py
273 lines (191 loc) · 7.64 KB
/
reproduce.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
import argparse
import os
import matplotlib.pyplot as plt
import matplotlib
import numpy as np
import scipy
BLACK = 'k'
GREEN = '#2ca02c'
BLUE = '#1f77b4'
RED = '#d62728'
ORANGE = '#ff7f0e'
PURPLE = '#9467bd'
TURQUOIS = '#17becf'
def compute_avg_reward(reward):
avg_reward = np.zeros_like(reward)
for i in range(len(reward)):
avg_reward[i] = np.sum(reward[:(i + 1)]) / (i + 1)
return avg_reward
def get_results(figure_num, results_dir):
x_ticks = [0, 2000, 4000, 6000, 8000, 10000]
x_tick_vals = x_ticks
y_ticks = None
marker = None
x_label = "Steps"
y_label = "Average rewards"
if figure_num == 4:
results = []
legend = []
fig_dir = f"{results_dir}/sum_rate_power"
values = [8, 32]
for val in values:
results.append(np.load(f"{fig_dir}/{val}.npy").squeeze())
legend.append(f"M = {val}, N = {val}, K = {val}")
legend_loc = 'upper left'
colors = [RED, BLUE]
x_ticks = np.arange(-20, 35, 5)
x_tick_vals = x_ticks
y_ticks = np.arange(0, 40, 5)
marker = ['o', '<']
x_label = "$P_{t}$ (dB)"
y_label = "Sum rate (bps/Hz)"
if figure_num == 5:
legend = []
fig_dir = f"{results_dir}/sum_rate_ris"
results = [np.load(f"{fig_dir}/result.npy")]
legend.append("Proposed DRL Method")
legend_loc = 'upper left'
colors = [RED]
x_ticks = np.arange(10, 210, 10)
x_tick_vals = x_ticks
y_ticks = np.arange(12, 34, 2)
x_label = "Number of elements in RIS"
y_label = "Sum rate (bps/Hz)"
elif figure_num == 6:
fig_dir = f"{results_dir}/power"
for file_name in os.listdir(fig_dir):
if "5" in file_name:
five = np.load(f"{fig_dir}/{file_name}").squeeze()
elif "30" in file_name:
thirty = np.load(f"{fig_dir}/{file_name}").squeeze()
avg_five = compute_avg_reward(five)
avg_thirty = compute_avg_reward(thirty)
results = [thirty, five, avg_thirty, avg_five]
legend = ["Instant Rewards, $P_{t}$ = 30dB", "Instant Rewards, $P_{t}$ = 5dB", "Average Rewards, $P_{t}$ = 30dB", "Average Rewards, $P_{t}$ = 5 dB"]
legend_loc = 'upper left'
colors = [BLUE, GREEN, RED, PURPLE]
y_ticks = [1, 10]
y_label = "Rewards"
elif figure_num == 7:
results = []
legend = []
fig_dir = f"{results_dir}/power"
power_levels = [-10, 0, 10, 20, 30]
for p_t in power_levels:
reward = np.load(f"{fig_dir}/{p_t}.npy").squeeze()
avg_reward = compute_avg_reward(reward)
results.append(avg_reward)
legend.append(f"$P_t$ = {p_t}dB")
legend_loc = 'best'
colors = [RED, BLUE, TURQUOIS, PURPLE, BLACK]
y_ticks = [1, 2, 3, 4, 5, 6, 7, 8]
elif figure_num == 8:
results = []
legend = []
fig_dir = f"{results_dir}/rsi_elements"
rsi_N = [30, 20, 10, 4]
for N in rsi_N:
reward = np.load(f"{fig_dir}/{N}.npy").squeeze()
avg_reward = compute_avg_reward(reward)
results.append(avg_reward)
legend.append(f"M = 4, N = {N}, K = 4")
legend_loc = 'lower right'
colors = [RED, BLUE, TURQUOIS, PURPLE]
y_ticks = [1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5]
elif figure_num == 9:
results = []
legend = []
fig_dir = f"{results_dir}/sum_rate_power"
rsi_N = [4, 10]
for N in rsi_N:
results.append(np.load(f"{fig_dir}/{N}.npy").squeeze())
legend.append(f"M = 4, N = {N}, K = 4")
legend_loc = 'upper left'
colors = [RED, BLUE]
x_ticks = np.arange(5, 35, 5)
x_tick_vals = x_ticks
y_ticks = np.arange(6, 17, 1)
marker = ['o', 'D']
x_label = "$P_{t}$ (dB)"
y_label = "Sum rate (bps/Hz)"
elif figure_num == 10:
results = []
legend = []
fig_dir = f"{results_dir}/cdf"
rsi_N = [4, 10, 4, 10]
power_levels = [5, 5, 30, 30]
for N, p_t in zip(rsi_N, power_levels):
reward = np.load(f"{fig_dir}/{N}_{p_t}.npy").squeeze()
results.append(reward)
legend.append(f"M = 4, N = {N}, K = 4, $P_t$ = {p_t} dB")
legend_loc = 'lower right'
colors = [RED, BLUE, ORANGE, PURPLE]
x_ticks = np.arange(0, 20, 2)
x_tick_vals = len(results[0]) / 18 * x_ticks
x_label = "Sum rate (bps/Hz)"
y_label = "CDF"
elif figure_num == 11:
results = []
legend = []
fig_dir = f"{results_dir}/learning_rate"
rates = [0.01, 0.001, 0.0001, 0.00001]
for lr in rates:
reward = np.load(f"{fig_dir}/{lr}.npy").squeeze()
avg_reward = compute_avg_reward(reward)
results.append(avg_reward)
legend.append(f"Learning rate = {lr}")
legend_loc = 'best'
colors = [RED, BLUE, TURQUOIS, PURPLE]
y_ticks = [1, 2, 3, 4, 5, 6, 7, 8]
elif figure_num == 12:
results = []
legend = []
fig_dir = f"{results_dir}/decay"
rates = [0.001, 0.0001, 0.00001, 0.000001]
for w in rates:
reward = np.load(f"{fig_dir}/{w}.npy").squeeze()
avg_reward = compute_avg_reward(reward)
results.append(avg_reward)
legend.append(f"Decaying rate = {w}")
legend_loc = 'best'
colors = [RED, BLUE, TURQUOIS, PURPLE]
y_ticks = [1.8, 2, 2.2, 2.4, 2.6, 2.8, 3, 3.2, 3.4, 3.6, 3.8, 4.0, 4.2, 4.4, 4.6, 4.8, 5.0]
save_name = f"{figure_num}_reproduced.jpg"
return results, legend, legend_loc, colors, x_ticks, x_tick_vals, y_ticks, marker, x_label, y_label, save_name
if __name__ == "__main__":
parser = argparse.ArgumentParser()
# Choose the type of the experiment
parser.add_argument('--figure_num', default=5, type=int, choices=[4, 5, 6, 7, 8, 9, 10, 11, 12],
help='Choose one of figures from the paper to reproduce')
args = parser.parse_args()
results_dir = "./Learning Curves"
fig_dir = f"./Learning Figures"
if not os.path.exists(fig_dir):
os.makedirs(fig_dir)
results, legend, legend_loc, colors, x_ticks, x_tick_vals, y_ticks, markers, x_label, y_label, save_name = get_results(args.figure_num, results_dir)
plt.rcParams['figure.figsize'] = [12, 10]
linewidth = 3
legend_size = 30
font_size = 15 if args.figure_num == 5 else 25
legend_font_size = 15 if args.figure_num == 6 or args.figure_num == 7 or args.figure_num == 10 or args.figure_num == 11 else 25
if markers is None:
for res, color in zip(results, colors):
if args.figure_num == 5:
plt.plot(x_ticks, res, linewidth=linewidth, color=color)
else:
plt.plot(res, linewidth=linewidth, color=color)
else:
if args.figure_num == 4 or args.figure_num == 9:
for res, color, marker in zip(results, colors, markers):
# plt.scatter(x_ticks, res, s=150, marker=marker, facecolors='none', edgecolors=color, linewidth=linewidth)
plt.plot(x_ticks, res, color=color, marker=marker, linewidth=linewidth)
y_ticks_vals = y_ticks
plt.xticks(x_tick_vals, x_ticks, fontsize=font_size)
if y_ticks is not None:
plt.yticks(y_ticks_vals, y_ticks, fontsize=font_size)
plt.xlabel(x_label, fontsize=font_size)
plt.ylabel(y_label, fontsize=font_size)
plt.legend(legend, loc=legend_loc, fontsize=legend_font_size, ncol=1)
plt.grid(True)
plt.savefig(f"{fig_dir}/{save_name}", bbox_inches='tight')
plt.show()