From 33b977b633446be72ec56c15ebd762ea40506da1 Mon Sep 17 00:00:00 2001 From: fuzhanrahmanian Date: Fri, 8 Dec 2023 21:01:43 +0000 Subject: [PATCH] deploy: f1a0d316e23a38fb9cfc7a02d21fca5755632c4d --- arcana.html | 2 +- arcana.logger.html | 2 +- arcana.losses.html | 2 +- arcana.models.decoders.html | 2 +- arcana.models.encoders.html | 2 +- arcana.models.html | 2 +- arcana.models.sequence_to_sequence.html | 2 +- arcana.plots.html | 2 +- arcana.prediction.html | 2 +- arcana.procedures.html | 2 +- arcana.processing.html | 2 +- arcana.regularizations.html | 2 +- arcana.training.html | 2 +- arcana.utils.html | 2 +- authors.html | 2 +- contributing.html | 2 +- genindex.html | 2 +- history.html | 2 +- index.html | 3 ++- installation.html | 2 +- modules.html | 2 +- objects.inv | Bin 2408 -> 2410 bytes py-modindex.html | 2 +- readme.html | 7 ++++++- search.html | 2 +- searchindex.js | 2 +- usage.html | 2 +- 27 files changed, 32 insertions(+), 26 deletions(-) diff --git a/arcana.html b/arcana.html index df4391f..f40453d 100644 --- a/arcana.html +++ b/arcana.html @@ -37,7 +37,7 @@ Arcana
- 0.1 + 1.0.0
diff --git a/arcana.logger.html b/arcana.logger.html index bafdd2c..339cc8f 100644 --- a/arcana.logger.html +++ b/arcana.logger.html @@ -37,7 +37,7 @@ Arcana
- 0.1 + 1.0.0
diff --git a/arcana.losses.html b/arcana.losses.html index 10a299b..f6778c9 100644 --- a/arcana.losses.html +++ b/arcana.losses.html @@ -37,7 +37,7 @@ Arcana
- 0.1 + 1.0.0
diff --git a/arcana.models.decoders.html b/arcana.models.decoders.html index 4255406..1ea48ab 100644 --- a/arcana.models.decoders.html +++ b/arcana.models.decoders.html @@ -37,7 +37,7 @@ Arcana
- 0.1 + 1.0.0
diff --git a/arcana.models.encoders.html b/arcana.models.encoders.html index 658764f..4fa656b 100644 --- a/arcana.models.encoders.html +++ b/arcana.models.encoders.html @@ -37,7 +37,7 @@ Arcana
- 0.1 + 1.0.0
diff --git a/arcana.models.html b/arcana.models.html index 3ef205e..a6ac2b8 100644 --- a/arcana.models.html +++ b/arcana.models.html @@ -37,7 +37,7 @@ Arcana
- 0.1 + 1.0.0
diff --git a/arcana.models.sequence_to_sequence.html b/arcana.models.sequence_to_sequence.html index 91dfd25..e826e09 100644 --- a/arcana.models.sequence_to_sequence.html +++ b/arcana.models.sequence_to_sequence.html @@ -37,7 +37,7 @@ Arcana
- 0.1 + 1.0.0
diff --git a/arcana.plots.html b/arcana.plots.html index 4616f0a..a3d2041 100644 --- a/arcana.plots.html +++ b/arcana.plots.html @@ -37,7 +37,7 @@ Arcana
- 0.1 + 1.0.0
diff --git a/arcana.prediction.html b/arcana.prediction.html index 308a9b4..73adad3 100644 --- a/arcana.prediction.html +++ b/arcana.prediction.html @@ -37,7 +37,7 @@ Arcana
- 0.1 + 1.0.0
diff --git a/arcana.procedures.html b/arcana.procedures.html index 371289b..4c29274 100644 --- a/arcana.procedures.html +++ b/arcana.procedures.html @@ -37,7 +37,7 @@ Arcana
- 0.1 + 1.0.0
diff --git a/arcana.processing.html b/arcana.processing.html index 68fdd83..b5b720c 100644 --- a/arcana.processing.html +++ b/arcana.processing.html @@ -37,7 +37,7 @@ Arcana
- 0.1 + 1.0.0
diff --git a/arcana.regularizations.html b/arcana.regularizations.html index 09e0fd6..e6101ff 100644 --- a/arcana.regularizations.html +++ b/arcana.regularizations.html @@ -37,7 +37,7 @@ Arcana
- 0.1 + 1.0.0
diff --git a/arcana.training.html b/arcana.training.html index 06bfe56..518691a 100644 --- a/arcana.training.html +++ b/arcana.training.html @@ -37,7 +37,7 @@ Arcana
- 0.1 + 1.0.0
diff --git a/arcana.utils.html b/arcana.utils.html index 0429f05..607f7ea 100644 --- a/arcana.utils.html +++ b/arcana.utils.html @@ -37,7 +37,7 @@ Arcana
- 0.1 + 1.0.0
diff --git a/authors.html b/authors.html index 1a55329..ef89b6a 100644 --- a/authors.html +++ b/authors.html @@ -37,7 +37,7 @@ Arcana
- 0.1 + 1.0.0
diff --git a/contributing.html b/contributing.html index 0f9c47e..4f59861 100644 --- a/contributing.html +++ b/contributing.html @@ -37,7 +37,7 @@ Arcana
- 0.1 + 1.0.0
diff --git a/genindex.html b/genindex.html index 117db31..ead9ecc 100644 --- a/genindex.html +++ b/genindex.html @@ -34,7 +34,7 @@ Arcana
- 0.1 + 1.0.0
diff --git a/history.html b/history.html index b6655b7..8f74f55 100644 --- a/history.html +++ b/history.html @@ -36,7 +36,7 @@ Arcana
- 0.1 + 1.0.0
diff --git a/index.html b/index.html index 8ed6a3d..83f0d72 100644 --- a/index.html +++ b/index.html @@ -36,7 +36,7 @@ Arcana
- 0.1 + 1.0.0
@@ -89,6 +89,7 @@

Welcome to Arcana’s documentation!ARCANA
  • Introduction
  • Features
  • +
  • Documentation
  • Installation
  • Quick Start
  • Configuration
  • diff --git a/installation.html b/installation.html index 6d970f3..20cbd42 100644 --- a/installation.html +++ b/installation.html @@ -37,7 +37,7 @@ Arcana
    - 0.1 + 1.0.0
    diff --git a/modules.html b/modules.html index ebdc14f..d9ae0f2 100644 --- a/modules.html +++ b/modules.html @@ -37,7 +37,7 @@ Arcana
    - 0.1 + 1.0.0
    diff --git a/objects.inv b/objects.inv index 6f9a9bb140544d04fc5732f1baecf33cc77db152..c05f8155ea8028daec8b22ec2196a7fa8dbf6ae3 100644 GIT binary patch delta 16 XcmaDM^h#)g6|141fu6xeTWwANF&hNc delta 14 VcmaDQ^g?KY6|;e!;YNFHP5>xn1a|-c diff --git a/py-modindex.html b/py-modindex.html index 022f784..ab36a0b 100644 --- a/py-modindex.html +++ b/py-modindex.html @@ -37,7 +37,7 @@ Arcana
    - 0.1 + 1.0.0
    diff --git a/readme.html b/readme.html index a185869..c1a1f41 100644 --- a/readme.html +++ b/readme.html @@ -37,7 +37,7 @@ Arcana
    - 0.1 + 1.0.0
    @@ -52,6 +52,7 @@
  • ARCANA
    • Introduction
    • Features
    • +
    • Documentation
    • Installation
    • Quick Start
    • Configuration
    • @@ -107,6 +108,10 @@

      Introduction

      The model provides robust multi-task prediction capabilities through its modular design and the ability to dynamically adjust. It processes a wide range of historical battery cycle data to provide foundational insights for initial degradation detection. Incorporating predefined operational parameters, such as discharge rates and cycle numbers, ARCANA offers a dual analytical approach. This approach, coupled with the model’s inherent ability to include uncertainty in its predictions, presents ARCANA as an essential framework, which enhances the strategic development of battery maintenance protocols as well as reliability and longevity in energy storage applications.

      +
      +

      Documentation

      +

      The documentation for ARCANA is available at [ARCANADocs](https://basf.github.io/ARCANA/).

      +

      Installation

      For installation instructions, please refer to the [Installation Guide](docs/installation.rst) within the documentation directory. diff --git a/search.html b/search.html index 41aa1d2..de7b13b 100644 --- a/search.html +++ b/search.html @@ -37,7 +37,7 @@ Arcana

      - 0.1 + 1.0.0
      diff --git a/searchindex.js b/searchindex.js index ccff92f..f4bd625 100644 --- a/searchindex.js +++ b/searchindex.js @@ -1 +1 @@ -Search.setIndex({"docnames": ["arcana", "arcana.logger", "arcana.losses", "arcana.models", "arcana.models.decoders", "arcana.models.encoders", "arcana.models.sequence_to_sequence", "arcana.plots", "arcana.prediction", "arcana.procedures", "arcana.processing", "arcana.regularizations", "arcana.training", "arcana.utils", "authors", "contributing", "history", "index", "installation", "modules", "readme", "usage"], "filenames": ["arcana.rst", "arcana.logger.rst", "arcana.losses.rst", "arcana.models.rst", "arcana.models.decoders.rst", "arcana.models.encoders.rst", "arcana.models.sequence_to_sequence.rst", "arcana.plots.rst", "arcana.prediction.rst", "arcana.procedures.rst", "arcana.processing.rst", "arcana.regularizations.rst", "arcana.training.rst", "arcana.utils.rst", "authors.rst", "contributing.rst", "history.rst", "index.rst", "installation.rst", "modules.rst", "readme.rst", "usage.rst"], "titles": ["Arcana package", "Arcana Logger", "Arcana Losses", "Arcana Models", "Arcana Models: Decoders", "Arcana models: encoders", "Arcana Models: sequence_to_sequence", "Arcana Plots", "Arcana Prediction", "Arcana Procedures", "Arcana Processing", "Arcana Regularizations", "Arcana Training", "Arcana Utils", "Credits", "Contributing", "History", "Welcome to Arcana\u2019s documentation!", "Installation", "arcana", "ARCANA", "Usage"], "terms": {"logger": [0, 17, 19, 20], "submodul": [0, 3, 19], "get_logg": [0, 1, 19, 20], "setup_applevel_logg": [0, 1, 19, 20], "loss": [0, 7, 11, 12, 17, 19, 20], "combinedhploss": [0, 2, 19], "forward": [0, 2, 3, 4, 5, 6, 12, 19], "combinedlploss": [0, 2, 19], "huberloss": [0, 2, 19], "logcoshloss": [0, 2, 19], "lossfactori": [0, 2, 19], "create_loss": [0, 2, 19], "mseloss": [0, 2, 19], "pinballloss": [0, 2, 19], "pinball_loss_numpi": [0, 2, 19], "quantileloss": [0, 2, 19], "is_numpi": [0, 2, 19], "is_tensor": [0, 2, 19], "to_numpi": [0, 2, 19], "to_tensor": [0, 2, 19], "loss_trac": [0, 12, 19], "losstrac": [0, 2, 19], "calculate_batch_loss_train": [0, 2, 19], "calculate_batch_loss_valid": [0, 2, 19], "calculate_epoch_loss": [0, 2, 19], "reset_temp_loss_trac": [0, 2, 19], "model": [0, 2, 7, 8, 9, 10, 12, 13, 17, 19], "decod": [0, 3, 6, 19, 20], "additive_decod": [0, 3, 19], "base_decod": [0, 3, 19], "multihead_decod": [0, 3, 19], "encod": [0, 3, 4, 6, 7, 19, 20], "additive_encod": [0, 3, 19], "base_encod": [0, 3, 19], "multihead_encod": [0, 3, 19], "sequence_to_sequ": [0, 3, 19], "seq2seq_factori": [0, 3, 19], "plot": [0, 8, 9, 12, 13, 17, 19], "analysis_plot_util": [0, 19], "analysisplotutil": [0, 7, 19], "plot_additive_attent": [0, 7, 19], "plot_all_multihead_attent": [0, 7, 19], "plot_sensitivity_analyi": [0, 7, 19], "scalarformatterforceformat": [0, 7, 19], "plot_util": [0, 19], "plot_model_learning_r": [0, 7, 19], "plot_sample_predict": [0, 7, 19], "plot_train_val_loss": [0, 7, 19], "plot_train_val_loss_individu": [0, 7, 19], "plot_lin": [0, 7, 19], "plot_scatt": [0, 7, 19], "set_label": [0, 7, 19], "predict": [0, 2, 4, 6, 7, 12, 13, 17, 19, 20], "quantile_predict": [0, 19], "quantilepredictor": [0, 8, 19], "apply_correct_exogen": [0, 8, 19], "calculate_metr": [0, 8, 19], "metrics_prepar": [0, 8, 19], "plot_analysi": [0, 8, 19], "plot_predict": [0, 8, 9, 19], "predict_data_prepar": [0, 8, 19], "predict_quantil": [0, 8, 19], "save_attent": [0, 8, 19], "save_metr": [0, 8, 19], "save_predict": [0, 8, 19], "save_sensit": [0, 8, 19], "save_transformed_predict": [0, 8, 19], "transform_predictions_to_numpi": [0, 8, 19], "metrics_help": [0, 8, 19], "procedur": [0, 17, 19, 20], "config_handl": [0, 19], "confighandl": [0, 9, 19], "get_data_config": [0, 9, 19], "get_general_config": [0, 9, 19], "get_model_config": [0, 9, 19], "get_procedure_config": [0, 9, 19], "dataconfig": [0, 9, 19], "data_head": [0, 9, 19], "maximum_available_cycl": [0, 9, 19], "number_of_sampl": [0, 9, 19], "path_to_config": [0, 9, 19], "test_sampl": [0, 9, 19], "train_ratio": [0, 9, 19], "val_test_ratio": [0, 9, 19], "generalconfig": [0, 9, 19], "data_nam": [0, 9, 19], "input_data_fold": [0, 9, 19], "pretrained_model": [0, 8, 9, 19], "scaler_model": [0, 9, 19], "test_id": [0, 9, 13, 19], "modelconfig": [0, 2, 9, 19], "read_tuning_conf": [0, 9, 19], "procedureconfig": [0, 9, 19], "attention_typ": [0, 9, 19], "learning_rate_typ": [0, 9, 11, 19], "naive_train": [0, 9, 19, 20], "number_of_tri": [0, 9, 19], "optuna_tun": [0, 9, 19, 20], "preprocess_data": [0, 9, 19], "transfer_learn": [0, 9, 19, 20], "predictprocedur": [0, 9, 19, 20], "all_prepar": [0, 9, 19], "get_pretrained_model": [0, 9, 19], "get_test_data": [0, 9, 19], "predicting_al": [0, 9, 19], "prepar": [0, 8, 9, 10, 13, 19, 20], "train": [0, 2, 7, 10, 11, 17, 19, 20], "trainprocedur": [0, 9, 19, 20], "data_split": [0, 9, 10, 19], "loader_initi": [0, 9, 19], "model_parameter_initi": [0, 9, 19], "save_data_split": [0, 9, 19], "save_model_paramet": [0, 9, 19], "set_devic": [0, 9, 19], "train_element_initi": [0, 9, 19], "tune": [0, 17, 19], "tuneprocedur": [0, 9, 19, 20], "rename_tri": [0, 9, 19], "save_tuning_param": [0, 9, 19], "process": [0, 12, 17, 18, 19, 20], "data_process": [0, 19], "dataprepar": [0, 10, 19], "get_data_for_model": [0, 10, 19], "get_max_available_scaled_cycl": [0, 10, 19], "pad_the_split": [0, 10, 19], "prepare_data_for_model": [0, 10, 19], "prepare_test_data_for_pretrained_model": [0, 10, 19], "standardize_data": [0, 10, 19], "tensorized_and_pad": [0, 10, 19], "regular": [0, 17, 19, 20], "optimizer_schedul": [0, 19], "schedulerfactori": [0, 11, 19], "get_schedul": [0, 11, 19], "stopping_criteria": [0, 19], "earlystop": [0, 11, 19], "step": [0, 7, 8, 11, 15, 19, 20], "teacher_forc": [0, 19], "teacherforcingschedul": [0, 11, 19], "get_ratio": [0, 11, 19], "train_model": [0, 19], "seq2seqtrain": [0, 12, 19], "calculate_overall_combined_loss": [0, 12, 19], "calculate_overall_loss": [0, 12, 19], "compute_loss": [0, 12, 19], "count_paramet": [0, 3, 6, 12, 19], "early_stopping_check": [0, 12, 19], "initialize_train": [0, 12, 19], "plot_training_param": [0, 12, 19], "save_training_results_and_plot": [0, 12, 19], "train_epoch": [0, 12, 19], "update_training_param": [0, 12, 19], "validation_epoch": [0, 12, 19], "util": [0, 2, 12, 17, 19, 20], "align_and_truncate_sampl": [0, 13, 19], "create_dir": [0, 13, 19], "handle_tensor": [0, 13, 19], "pad_array_to_length": [0, 13, 19], "prepare_folder_structur": [0, 13, 19], "prepare_optuna_folder_structur": [0, 13, 19], "save_optuna_fig": [0, 13, 19], "save_plot": [0, 13, 19], "save_test_data": [0, 13, 19], "standardize_dataset": [0, 13, 19], "top": 0, "level": [0, 1, 20], "thi": [1, 7, 8, 9, 10, 12, 15, 18, 20], "defin": [1, 11, 20], "our": 1, "applic": [1, 20], "The": [1, 4, 6, 7, 9, 11, 12, 15, 18, 20], "file": [1, 9, 20], "i": [1, 2, 4, 6, 9, 10, 11, 13, 15, 18, 20], "adopt": 1, "copi": [1, 15, 18], "from": [1, 2, 6, 7, 16, 17, 20], "madap": 1, "project": [1, 4, 5, 15, 16, 21], "fuzhan": [1, 14], "rahmanian": [1, 14, 20], "cite": [1, 20], "http": [1, 15, 18, 20], "github": [1, 15, 16, 18], "com": [1, 14, 15, 18, 20], "fuzhanrahmanian": [1, 14], "module_nam": 1, "return": [1, 2, 4, 5, 6, 8, 9, 10, 11, 12, 13], "name": [1, 7, 13, 15, 20], "call": 1, "function": [1, 2, 7, 8, 9, 10, 11, 12, 13, 15, 20], "param": [1, 7, 9, 13], "type": [1, 7, 9, 11, 13, 17, 20], "str": [1, 7, 9, 11, 12, 13], "log": [1, 2, 20], "logger_nam": 1, "file_nam": [1, 20], "none": [1, 2, 7, 9, 11, 12, 13, 14], "set": [1, 7, 9, 15, 20], "up": [1, 11, 13, 15, 20], "app": 1, "default": [1, 2, 7, 9, 13], "app_logger_nam": 1, "option": [1, 2, 7, 13], "custom": [2, 20], "class": [2, 4, 5, 6, 7, 8, 9, 10, 11, 12, 20], "arg": [2, 4, 5, 6], "ani": [2, 4, 5, 6, 15, 20], "kwarg": [2, 4, 5, 6], "base": [2, 4, 5, 6, 7, 8, 9, 10, 11, 12, 20], "combin": [2, 11], "huber": 2, "pinbal": 2, "quantil": [2, 4, 8], "regress": 2, "target": [2, 6, 8, 12, 13], "mask": [2, 12], "comput": [2, 12], "paramet": [2, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 20], "torch": [2, 4, 5, 6, 11, 12, 13], "tensor": [2, 4, 5, 6, 7, 10, 12, 13], "np": [2, 7, 13], "ndarrai": [2, 13], "valu": [2, 7, 9, 12, 13, 20], "appli": [2, 4, 8, 12], "mean": [2, 7, 8], "logcosh": 2, "delta": 2, "1": [2, 4, 6, 10, 11, 17], "0": [2, 7, 11, 17], "object": [2, 6, 7, 8, 9, 10, 11, 12, 13], "cosh": 2, "factori": [2, 6, 11], "static": 2, "config": [2, 6, 9, 12], "creat": [2, 4, 6, 9, 12, 13, 15], "nn": [2, 6, 13], "squar": [2, 8], "error": [2, 8], "x_vector": 2, "check": [2, 12, 13, 15], "x": [2, 7], "numpi": [2, 8], "arrai": [2, 7, 8, 13], "input": [2, 4, 5, 20], "vector": [2, 4], "bool": [2, 7, 9, 11, 12], "true": [2, 9, 11, 12], "fals": [2, 7], "otherwis": 2, "convert": [2, 10], "If": [2, 15, 18, 20], "detach": 2, "graph": 2, "move": [2, 12], "cpu": 2, "devic": [2, 9, 12], "trace": 2, "output_dim": 2, "dure": [2, 20], "valid": [2, 7, 9, 10, 11, 12, 20], "train_loss": [2, 11, 12], "calcul": [2, 8, 12], "each": [2, 7, 12], "batch": [2, 7, 12, 20], "add": [2, 4, 12, 15], "validation_loss": 2, "train_load": [2, 12], "val_load": [2, 12], "averag": [2, 12], "epoch": [2, 7, 11, 12, 20], "data": [2, 8, 9, 10, 12, 13, 20], "dataload": [2, 12], "loader": [2, 9, 12], "reset": [2, 5], "temporari": 2, "additivedecod": [3, 4], "attent": [3, 4, 7, 8, 20], "basedecod": [3, 4], "initialize_weight": [3, 4], "multiheaddecod": [3, 4], "additiveencod": [3, 5], "baseencod": [3, 5], "reset_hidden_st": [3, 5], "multiheadencod": [3, 5], "seq2seqfactori": [3, 6], "create_additive_model": [3, 6], "create_multihead_model": [3, 6], "print_weight": [3, 6], "seq2seq": [3, 6, 12], "addit": [4, 5, 6, 7], "dencod": 4, "x_tensor": [4, 5], "hidden_st": 4, "cell_stat": 4, "encoder_output": 4, "pass": [4, 5, 6, 12, 15], "implement": [4, 5, 6, 11, 17, 20], "follow": [4, 6, 10, 12, 20], "get": [4, 6, 9, 10, 11, 17, 20], "score": [4, 7, 8, 12], "context": [4, 20], "concaten": [4, 6], "through": [4, 12, 15, 18, 20], "lstm": [4, 5, 20], "layer": [4, 6, 20], "output": [4, 5, 6, 12, 20], "fc": 4, "leaki": 4, "relu": 4, "dropout": [4, 20], "2": [4, 6, 10], "3": [4, 6, 7, 10, 11, 15], "hidden": [4, 5, 12, 20], "state": [4, 5, 9, 12], "cell": [4, 5], "tupl": 4, "hidden_out": 4, "cell_out": 4, "attention_scor": 4, "transform": [4, 8], "same": 4, "size": [4, 7, 20], "tanh": 4, "activ": 4, "sum": 4, "scalar": 4, "softmax": 4, "shape": 4, "batch_siz": [4, 6], "hidden_s": 4, "seq_length": [4, 6], "subclass": [4, 5], "initi": [4, 9, 12, 20], "weight": [4, 6, 8, 12, 20], "multihead": [4, 5, 6, 20], "input_s": [4, 6], "num_lay": 4, "attention_output_weights_probs_decod": 4, "length": [5, 6, 7, 8, 9, 10, 12, 13], "sequenc": [5, 6, 7, 8, 9, 11, 12, 20], "self": 5, "count": [6, 12], "number": [6, 8, 11, 12, 20], "trainabl": [6, 12], "num_param": 6, "int": [6, 7, 8, 9, 11, 12], "an": [6, 13, 15, 20], "dict": [6, 7, 12], "dictionari": [6, 7, 12], "contain": [6, 7, 8, 9, 12, 20], "configur": [6, 17], "print": [6, 12], "time": 6, "seri": 6, "forecast": 6, "sourc": [6, 17], "source_length": 6, "teacher_forcing_ratio": [6, 11], "start_posit": 6, "iter": 6, "over": 6, "specif": [6, 20], "window": 6, "4": [6, 10, 11], "exogen": [6, 8], "variabl": [6, 12], "5": [6, 10, 11, 15], "store": [6, 12], "output_s": 6, "float": [6, 8, 9, 11, 12], "teacher": [6, 11, 12, 20], "forc": [6, 11, 12, 20], "ratio": [6, 10, 11, 20], "start": [6, 17], "posit": 6, "num_quantil": 6, "matrix": 7, "head": [7, 20], "sensit": [7, 8], "analysi": [7, 8, 20], "arcana_procedur": [7, 8, 9, 20], "sample_numb": [7, 8], "attention_prob": 7, "arch_point": 7, "overal": [7, 12], "perform": [7, 20], "system": [7, 15], "probabl": 7, "architectur": [7, 17], "pointer": 7, "batch_idx": 7, "_type_": 7, "_description_": 7, "future_step": 7, "available_sequ": 7, "log_scal": 7, "futur": 7, "save_path": [7, 13], "path": [7, 9, 13, 20], "save": [7, 8, 9, 12, 13], "useoffset": 7, "usemathtext": 7, "uselocal": 7, "scalarformatt": 7, "format": [7, 20], "colorbar": 7, "label": [7, 8], "scientif": 7, "notat": 7, "inherit": 7, "matplotlib": 7, "ticker": 7, "learn": [7, 11, 12, 20], "rate": [7, 11, 12, 20], "learning_rate_dict": [7, 12], "plot_path": 7, "original_sequ": 7, "mean_predict": 7, "loss_typ": [7, 20], "scores_predict": 7, "upper_predict": 7, "lower_predict": 7, "ylabel": 7, "origin": [7, 8, 15, 16], "avail": [7, 8, 9, 10, 11, 12, 20], "uncertainti": [7, 20], "whether": [7, 9, 15], "random_index": 7, "random": 7, "index": [7, 17], "upper": 7, "lower": 7, "list": [7, 9, 10, 11, 12, 13, 15], "y": 7, "axi": 7, "train_loss_mod": 7, "dimens": [7, 12, 20], "gener": [7, 9, 11, 17], "ar": [7, 9, 15, 20], "describ": 7, "_gener": 7, "multipurpos": 7, "ax": 7, "x_valu": 7, "y_valu": 7, "color": 7, "legend_nam": 7, "line": 7, "_subplot": 7, "axessubplot": 7, "legend": 7, "scatter": 7, "x_label": 7, "y_label": 7, "test_data": [8, 13], "correct": 8, "metric": [8, 20], "sampl": [8, 13, 20], "helper": [8, 13], "num_steps_to_predict": 8, "len_available_label": 8, "also": [8, 9, 20], "scale": [8, 10, 13], "target_label": 8, "predict_label": 8, "mse_scor": 8, "rmse_scor": 8, "root": 8, "mape_scor": 8, "absolut": 8, "percentag": 8, "mae_scor": 8, "which": [9, 11, 12, 20], "us": [9, 10, 11, 13, 15, 20, 21], "read": 9, "dataclass": 9, "handler": 9, "general_paramet": 9, "ini": [9, 20], "trial": [9, 12, 20], "attribut": [9, 20], "optuna": [9, 12, 20], "test": [9, 10, 13, 15, 20], "pretrain": [9, 10], "model_fold": [9, 13], "folder": [9, 13], "fix_sequency_length": 9, "main": [9, 10, 12, 20], "It": [9, 10, 11, 20], "some": 9, "necessari": [9, 20], "finetun": [9, 10, 20], "all": [9, 15, 20], "split": [9, 10, 20], "element": 9, "done": [9, 15], "librari": 9, "renam": 9, "accord": [9, 20], "prune": 9, "delet": 9, "studi": 9, "run": [9, 15, 18, 20], "first": [9, 14, 16], "optim": [9, 11, 12, 20], "bad": 9, "includ": [10, 15, 20], "standard": [10, 13], "pad": [10, 13], "them": [10, 12, 15], "6": [10, 15], "general_config": [10, 20], "data_config": 10, "procedure_config": [10, 20], "maximum": [10, 20], "cycl": [10, 20], "val": [10, 12], "panda": 10, "datafram": [10, 13], "padded_train": 10, "padded_v": 10, "padded_test": 10, "padded_data": 10, "data_length": 10, "schedul": [11, 12, 20], "model_config": 11, "len_train_load": 11, "given": [11, 13, 15], "rais": 11, "valueerror": 11, "unknown": 11, "earli": [11, 12, 20], "stop": [11, 12, 20], "criterion_rul": 11, "pq": 11, "training_strip": 11, "10": 11, "alpha": 11, "patienc": [11, 20], "val_loss": [11, 12], "three": 11, "criteria": [11, 20], "gl": 11, "pqup": 11, "increas": 11, "progress": 11, "quotient": 11, "met": 11, "num_epoch": 11, "epoch_divis": 11, "seq_start": 11, "seq_end": 11, "start_learning_ratio": 11, "end_learning_ratio": 11, "005": 11, "decay_strid": 11, "linear": 11, "decai": [11, 20], "initial_teacher_forcing_ratio": 11, "exp": 11, "decay_paramet": 11, "bound": 11, "between": 11, "higher": 11, "begin": [11, 20], "gradual": 11, "decreas": 11, "available_seq": [11, 12], "script": 12, "criterion": 12, "process_typ": 12, "temp_losses_individu": 12, "endogen": 12, "out": 12, "zero": 12, "appropri": 12, "dim_weight": 12, "later": 12, "should": [12, 13, 15], "current": 12, "should_stop": 12, "differ": [12, 20], "directori": [12, 13, 20], "result": [12, 13], "one": [12, 13], "loop": 12, "gradient": 12, "backpropag": 12, "updat": [12, 15, 16], "val_length": 12, "control": [12, 20], "doe": 12, "last": 12, "after": 12, "everi": [12, 15], "50": 12, "turn": 12, "off": [12, 16], "packag": [13, 16, 17, 19, 20], "all_predict": 13, "all_target_data_list": 13, "align": 13, "truncat": 13, "truncated_all_predict": 13, "truncated_all_target": 13, "present": [13, 20], "locat": [13, 20], "where": [13, 20], "obj": 13, "handl": 13, "arr": 13, "target_length": 13, "nan": 13, "structur": [13, 20], "id": 13, "trial_path": 13, "plot_typ": 13, "figur": 13, "test_length": 13, "pd": 13, "scaled_data": 13, "scaler": [13, 20], "sklearn": 13, "preprocess": [13, 20], "minmaxscal": 13, "gmail": 14, "yet": [14, 15], "why": 14, "welcom": 15, "thei": 15, "greatli": 15, "appreci": 15, "littl": 15, "bit": 15, "help": [15, 20], "credit": [15, 17], "alwai": [15, 18], "you": [15, 18, 20], "can": [15, 18, 20], "mani": 15, "wai": 15, "basf": [15, 18], "arcana": [15, 16, 18, 21], "issu": 15, "pleas": [15, 20], "your": [15, 18, 20], "oper": [15, 20], "version": 15, "detail": 15, "about": 15, "local": 15, "setup": [15, 18], "might": 15, "troubleshoot": 15, "reproduc": 15, "look": 15, "anyth": 15, "tag": 15, "want": 15, "open": 15, "whoever": 15, "enhanc": [15, 20], "could": 15, "more": 15, "part": [15, 20], "offici": [15, 16], "doc": [15, 20], "docstr": 15, "even": 15, "web": 15, "blog": 15, "post": 15, "articl": 15, "propos": 15, "explain": [15, 20], "how": [15, 20], "would": 15, "work": 15, "keep": 15, "scope": 15, "narrow": 15, "possibl": [15, 20], "make": 15, "easier": 15, "rememb": 15, "volunt": 15, "driven": 15, "readi": 15, "here": [15, 20], "": [15, 20], "develop": [15, 17, 20], "fork": 15, "repo": [15, 18], "clone": [15, 18], "git": [15, 18], "your_name_her": 15, "instal": [15, 17], "virtualenv": 15, "assum": 15, "have": [15, 18, 20], "virtualenvwrapp": 15, "mkvirtualenv": 15, "cd": 15, "python": [15, 18, 20], "py": [15, 18], "branch": [15, 16], "checkout": 15, "b": [15, 20], "bugfix": 15, "now": 15, "chang": 15, "when": 15, "re": 15, "flake8": 15, "other": [15, 20], "tox": 15, "NO": 15, "pytest": 15, "To": [15, 18, 20, 21], "just": 15, "pip": [15, 18, 20], "commit": 15, "push": 15, "m": [15, 20], "descript": [15, 20], "websit": 15, "befor": [15, 20], "meet": 15, "put": 15, "new": 15, "readm": 15, "rst": [15, 20], "7": 15, "8": 15, "pypi": 15, "A": [15, 20], "remind": 15, "maintain": 15, "sure": 15, "entri": 15, "histori": [15, 17], "Then": 15, "bump2vers": 15, "patch": 15, "major": 15, "minor": 15, "travi": 15, "releas": [16, 17], "document": [16, 20], "ad": 16, "abstract": 16, "modular": [16, 20], "introduct": 17, "featur": 17, "quick": 17, "citat": 17, "stabl": 17, "usag": 17, "subpackag": [17, 19], "modul": [17, 19, 20], "contribut": 17, "report": 17, "bug": 17, "fix": 17, "write": 17, "submit": 17, "feedback": 17, "pull": 17, "request": 17, "guidelin": 17, "deploi": 17, "lead": [17, 20], "contributor": 17, "2023": [17, 20], "02": 17, "01": 17, "08": [17, 20], "25": 17, "12": [17, 20], "search": 17, "page": 17, "command": [18, 20], "termin": [18, 20], "prefer": 18, "method": [18, 20], "most": 18, "recent": 18, "don": 18, "t": 18, "guid": [18, 20], "download": [18, 20], "either": 18, "public": 18, "repositori": 18, "Or": 18, "tarbal": 18, "curl": 18, "ojl": 18, "master": 18, "onc": 18, "content": 19, "ttention": 20, "r": 20, "e": 20, "c": 20, "urrent": 20, "ognit": 20, "lgorithm": 20, "n": 20, "eural": 20, "nalysi": 20, "logo": 20, "conceptu": 20, "design": 20, "midjournei": 20, "www": 20, "seq": 20, "integr": 20, "mechan": 20, "stage": 20, "lifecycl": 20, "monitor": 20, "batteri": 20, "degrad": 20, "provid": 20, "robust": 20, "multi": 20, "task": 20, "capabl": 20, "its": 20, "abil": 20, "dynam": 20, "adjust": 20, "wide": 20, "rang": 20, "histor": 20, "foundat": 20, "insight": 20, "detect": 20, "incorpor": 20, "predefin": 20, "discharg": 20, "offer": 20, "dual": 20, "analyt": 20, "approach": 20, "coupl": 20, "inher": 20, "essenti": 20, "framework": 20, "strateg": 20, "mainten": 20, "protocol": 20, "well": 20, "reliabl": 20, "longev": 20, "energi": 20, "storag": 20, "For": 20, "instruct": 20, "refer": 20, "within": 20, "achiev": 20, "naiv": 20, "enabl": 20, "dataset": 20, "hyperparamet": 20, "specifi": 20, "transfer": 20, "proce": 20, "fine": 20, "pre": 20, "strategi": 20, "g": 20, "final": 20, "flag": 20, "code": 20, "snippet": 20, "import": [20, 21], "arcana_debug": 20, "def": 20, "run_test": 20, "tl_strategi": 20, "__name__": 20, "__main__": 20, "ensur": 20, "requir": 20, "depend": 20, "per": 20, "flexibl": 20, "adapt": 20, "scenario": 20, "health": 20, "tailor": 20, "need": 20, "two": 20, "general_set": 20, "model_paramet": 20, "match": 20, "characterist": 20, "intend": 20, "serv": 20, "central": 20, "hub": 20, "aspect": 20, "workflow": 20, "manag": 20, "kei": 20, "section": 20, "respect": 20, "captur": 20, "uniqu": 20, "identifi": 20, "allow": 20, "header": 20, "consid": 20, "addition": 20, "toggl": 20, "variou": 20, "disabl": 20, "behavior": 20, "suit": 20, "natur": 20, "extent": 20, "below": 20, "outlin": 20, "chosen": 20, "These": 20, "crucial": 20, "converg": 20, "factor": 20, "reduct": 20, "cyclic": 20, "proper": 20, "better": 20, "faster": 20, "like": 20, "bidirection": 20, "directli": 20, "influenc": 20, "capac": 20, "complex": 20, "tempor": 20, "both": 20, "focu": 20, "understand": 20, "prevent": 20, "overfit": 20, "determin": 20, "long": 20, "continu": 20, "without": 20, "improv": 20, "stabil": 20, "speed": 20, "end": 20, "transit": 20, "autonom": 20, "tuning_config": 20, "facilit": 20, "systemat": 20, "explor": 20, "space": 20, "techniqu": 20, "discret": 20, "categor": 20, "choic": 20, "diagram": 20, "simplifi": 20, "uml": 20, "delin": 20, "research": 20, "paper": 20, "find": 20, "theoret": 20, "background": 20, "full": 20, "f": 20, "lee": 20, "linzner": 20, "d": 20, "michel": 20, "k": 20, "merker": 20, "l": 20, "berk": 20, "nuss": 20, "stein": 20, "h": 20, "toward": 20, "chemistri": 20, "agnost": 20, "lifetim": 20, "chemrxiv": 20, "access": 20}, "objects": {"": [[0, 0, 0, "-", "arcana"]], "arcana": [[1, 0, 0, "-", "logger"], [2, 0, 0, "-", "losses"], [3, 0, 0, "-", "models"], [7, 0, 0, "-", "plots"], [8, 0, 0, "-", "prediction"], [9, 0, 0, "-", "procedures"], [10, 0, 0, "-", "processing"], [11, 0, 0, "-", "regularizations"], [12, 0, 0, "-", "training"], [13, 0, 0, "-", "utils"]], "arcana.logger": [[1, 0, 0, "-", "logger"]], "arcana.logger.logger": [[1, 1, 1, "", "get_logger"], [1, 1, 1, "", "setup_applevel_logger"]], "arcana.losses": [[2, 0, 0, "-", "loss"], [2, 0, 0, "-", "loss_trace"]], "arcana.losses.loss": [[2, 2, 1, "", "CombinedHPLoss"], [2, 2, 1, "", "CombinedLPLoss"], [2, 2, 1, "", "HuberLoss"], [2, 2, 1, "", "LogCoshLoss"], [2, 2, 1, "", "LossFactory"], [2, 2, 1, "", "MSELoss"], [2, 2, 1, "", "PinballLoss"], [2, 2, 1, "", "QuantileLoss"], [2, 1, 1, "", "is_numpy"], [2, 1, 1, "", "is_tensor"], [2, 1, 1, "", "to_numpy"], [2, 1, 1, "", "to_tensor"]], "arcana.losses.loss.CombinedHPLoss": [[2, 3, 1, "", "forward"]], "arcana.losses.loss.CombinedLPLoss": [[2, 3, 1, "", "forward"]], "arcana.losses.loss.LogCoshLoss": [[2, 3, 1, "", "forward"]], "arcana.losses.loss.LossFactory": [[2, 3, 1, "", "create_loss"]], "arcana.losses.loss.PinballLoss": [[2, 3, 1, "", "forward"], [2, 3, 1, "", "pinball_loss_numpy"]], "arcana.losses.loss.QuantileLoss": [[2, 3, 1, "", "forward"]], "arcana.losses.loss_trace": [[2, 2, 1, "", "LossTrace"]], "arcana.losses.loss_trace.LossTrace": [[2, 3, 1, "", "calculate_batch_loss_train"], [2, 3, 1, "", "calculate_batch_loss_validation"], [2, 3, 1, "", "calculate_epoch_loss"], [2, 3, 1, "", "reset_temp_loss_trace"]], "arcana.models": [[4, 0, 0, "-", "decoders"], [5, 0, 0, "-", "encoders"], [6, 0, 0, "-", "sequence_to_sequence"]], "arcana.models.decoders": [[4, 0, 0, "-", "additive_decoder"], [4, 0, 0, "-", "base_decoder"], [4, 0, 0, "-", "multihead_decoder"]], "arcana.models.decoders.additive_decoder": [[4, 2, 1, "", "AdditiveDecoder"], [4, 2, 1, "", "Attention"]], "arcana.models.decoders.additive_decoder.AdditiveDecoder": [[4, 3, 1, "", "forward"]], "arcana.models.decoders.additive_decoder.Attention": [[4, 3, 1, "", "forward"]], "arcana.models.decoders.base_decoder": [[4, 2, 1, "", "BaseDecoder"], [4, 1, 1, "", "initialize_weights"]], "arcana.models.decoders.base_decoder.BaseDecoder": [[4, 3, 1, "", "forward"]], "arcana.models.decoders.multihead_decoder": [[4, 2, 1, "", "MultiheadDecoder"]], "arcana.models.decoders.multihead_decoder.MultiheadDecoder": [[4, 3, 1, "", "forward"]], "arcana.models.encoders": [[5, 0, 0, "-", "additive_encoder"], [5, 0, 0, "-", "base_encoder"], [5, 0, 0, "-", "multihead_encoder"]], "arcana.models.encoders.additive_encoder": [[5, 2, 1, "", "AdditiveEncoder"]], "arcana.models.encoders.additive_encoder.AdditiveEncoder": [[5, 3, 1, "", "forward"]], "arcana.models.encoders.base_encoder": [[5, 2, 1, "", "BaseEncoder"]], "arcana.models.encoders.base_encoder.BaseEncoder": [[5, 3, 1, "", "forward"], [5, 3, 1, "", "reset_hidden_state"]], "arcana.models.encoders.multihead_encoder": [[5, 2, 1, "", "MultiheadEncoder"]], "arcana.models.encoders.multihead_encoder.MultiheadEncoder": [[5, 3, 1, "", "forward"]], "arcana.models.sequence_to_sequence": [[6, 0, 0, "-", "seq2seq_factory"], [6, 0, 0, "-", "sequence_to_sequence"]], "arcana.models.sequence_to_sequence.seq2seq_factory": [[6, 2, 1, "", "Seq2SeqFactory"]], "arcana.models.sequence_to_sequence.seq2seq_factory.Seq2SeqFactory": [[6, 3, 1, "", "count_parameters"], [6, 3, 1, "", "create_additive_model"], [6, 3, 1, "", "create_multihead_model"], [6, 3, 1, "", "print_weights"]], "arcana.models.sequence_to_sequence.sequence_to_sequence": [[6, 2, 1, "", "Seq2Seq"]], "arcana.models.sequence_to_sequence.sequence_to_sequence.Seq2Seq": [[6, 3, 1, "", "forward"]], "arcana.plots": [[7, 0, 0, "-", "analysis_plot_utils"], [7, 0, 0, "-", "plot_utils"], [7, 0, 0, "-", "plots"]], "arcana.plots.analysis_plot_utils": [[7, 2, 1, "", "AnalysisPlotUtils"], [7, 2, 1, "", "ScalarFormatterForceFormat"]], "arcana.plots.analysis_plot_utils.AnalysisPlotUtils": [[7, 3, 1, "", "plot_additive_attention"], [7, 3, 1, "", "plot_all_multihead_attention"], [7, 3, 1, "", "plot_sensitivity_analyis"]], "arcana.plots.plot_utils": [[7, 1, 1, "", "plot_model_learning_rate"], [7, 1, 1, "", "plot_sample_prediction"], [7, 1, 1, "", "plot_train_val_loss"], [7, 1, 1, "", "plot_train_val_loss_individual"]], "arcana.plots.plots": [[7, 2, 1, "", "Plots"]], "arcana.plots.plots.Plots": [[7, 3, 1, "", "plot_line"], [7, 3, 1, "", "plot_scatter"], [7, 3, 1, "", "set_labels"]], "arcana.prediction": [[8, 0, 0, "-", "quantile_prediction"]], "arcana.prediction.quantile_prediction": [[8, 2, 1, "", "QuantilePredictor"], [8, 1, 1, "", "metrics_helper"]], "arcana.prediction.quantile_prediction.QuantilePredictor": [[8, 3, 1, "", "apply_correct_exogenous"], [8, 3, 1, "", "calculate_metrics"], [8, 3, 1, "", "metrics_preparation"], [8, 3, 1, "", "plot_analysis"], [8, 3, 1, "", "plot_predictions"], [8, 3, 1, "", "predict_data_preparation"], [8, 3, 1, "", "predict_quantiles"], [8, 3, 1, "", "save_attention"], [8, 3, 1, "", "save_metrics"], [8, 3, 1, "", "save_predictions"], [8, 3, 1, "", "save_sensitivity"], [8, 3, 1, "", "save_transformed_predictions"], [8, 3, 1, "", "transform_predictions_to_numpy"]], "arcana.procedures": [[9, 0, 0, "-", "config_handler"], [9, 0, 0, "-", "predicting"], [9, 0, 0, "-", "training"], [9, 0, 0, "-", "tuning"]], "arcana.procedures.config_handler": [[9, 2, 1, "", "ConfigHandler"], [9, 2, 1, "", "DataConfig"], [9, 2, 1, "", "GeneralConfig"], [9, 2, 1, "", "ModelConfig"], [9, 2, 1, "", "ProcedureConfig"]], "arcana.procedures.config_handler.ConfigHandler": [[9, 3, 1, "", "get_data_config"], [9, 3, 1, "", "get_general_config"], [9, 3, 1, "", "get_model_config"], [9, 3, 1, "", "get_procedure_config"]], "arcana.procedures.config_handler.DataConfig": [[9, 4, 1, "", "data_headers"], [9, 4, 1, "", "maximum_available_cycles"], [9, 4, 1, "", "number_of_samples"], [9, 4, 1, "", "path_to_config"], [9, 4, 1, "", "test_sample"], [9, 4, 1, "", "train_ratio"], [9, 4, 1, "", "val_test_ratio"]], "arcana.procedures.config_handler.GeneralConfig": [[9, 4, 1, "", "data_name"], [9, 4, 1, "", "input_data_folder"], [9, 4, 1, "", "path_to_config"], [9, 4, 1, "", "pretrained_model"], [9, 4, 1, "", "scaler_model"], [9, 4, 1, "", "test_id"]], "arcana.procedures.config_handler.ModelConfig": [[9, 3, 1, "", "read_tuning_conf"]], "arcana.procedures.config_handler.ProcedureConfig": [[9, 4, 1, "", "attention_type"], [9, 4, 1, "", "learning_rate_type"], [9, 4, 1, "", "naive_training"], [9, 4, 1, "", "number_of_trials"], [9, 4, 1, "", "optuna_tuning"], [9, 4, 1, "", "path_to_config"], [9, 4, 1, "", "predicting"], [9, 4, 1, "", "preprocess_data"], [9, 4, 1, "", "transfer_learning"]], "arcana.procedures.predicting": [[9, 2, 1, "", "PredictProcedure"]], "arcana.procedures.predicting.PredictProcedure": [[9, 3, 1, "", "all_preparation"], [9, 3, 1, "", "get_pretrained_model"], [9, 3, 1, "", "get_test_data"], [9, 3, 1, "", "predicting"], [9, 3, 1, "", "predicting_all"], [9, 3, 1, "", "preparation"]], "arcana.procedures.training": [[9, 2, 1, "", "TrainProcedure"]], "arcana.procedures.training.TrainProcedure": [[9, 3, 1, "", "data_splits"], [9, 3, 1, "", "loader_initialization"], [9, 3, 1, "", "model_parameter_initialization"], [9, 3, 1, "", "save_data_splits"], [9, 3, 1, "", "save_model_parameters"], [9, 3, 1, "", "set_device"], [9, 3, 1, "", "train_element_initialization"], [9, 3, 1, "", "training"]], "arcana.procedures.tuning": [[9, 2, 1, "", "TuneProcedure"]], "arcana.procedures.tuning.TuneProcedure": [[9, 3, 1, "", "rename_trials"], [9, 3, 1, "", "save_tuning_params"], [9, 3, 1, "", "tuning"]], "arcana.processing": [[10, 0, 0, "-", "data_processing"]], "arcana.processing.data_processing": [[10, 2, 1, "", "DataPreparation"]], "arcana.processing.data_processing.DataPreparation": [[10, 3, 1, "", "data_splits"], [10, 3, 1, "", "get_data_for_model"], [10, 3, 1, "", "get_max_available_scaled_cycle"], [10, 3, 1, "", "pad_the_splits"], [10, 3, 1, "", "prepare_data_for_model"], [10, 3, 1, "", "prepare_test_data_for_pretrained_model"], [10, 3, 1, "", "standardize_data"], [10, 3, 1, "", "tensorized_and_pad"]], "arcana.regularizations": [[11, 0, 0, "-", "optimizer_scheduler"], [11, 0, 0, "-", "stopping_criteria"], [11, 0, 0, "-", "teacher_forcing"]], "arcana.regularizations.optimizer_scheduler": [[11, 2, 1, "", "SchedulerFactory"]], "arcana.regularizations.optimizer_scheduler.SchedulerFactory": [[11, 3, 1, "", "get_scheduler"]], "arcana.regularizations.stopping_criteria": [[11, 2, 1, "", "EarlyStopping"]], "arcana.regularizations.stopping_criteria.EarlyStopping": [[11, 3, 1, "", "step"]], "arcana.regularizations.teacher_forcing": [[11, 2, 1, "", "TeacherForcingScheduler"]], "arcana.regularizations.teacher_forcing.TeacherForcingScheduler": [[11, 3, 1, "", "get_ratio"]], "arcana.training": [[12, 0, 0, "-", "train_model"]], "arcana.training.train_model": [[12, 2, 1, "", "Seq2SeqTrainer"]], "arcana.training.train_model.Seq2SeqTrainer": [[12, 3, 1, "", "calculate_overall_combined_loss"], [12, 3, 1, "", "calculate_overall_loss"], [12, 3, 1, "", "compute_loss"], [12, 3, 1, "", "count_parameters"], [12, 3, 1, "", "early_stopping_check"], [12, 3, 1, "", "initialize_training"], [12, 3, 1, "", "plot_training_params"], [12, 3, 1, "", "save_training_results_and_plots"], [12, 3, 1, "", "train_epoch"], [12, 3, 1, "", "train_model"], [12, 3, 1, "", "update_training_params"], [12, 3, 1, "", "validation_epoch"]], "arcana.utils": [[13, 0, 0, "-", "utils"]], "arcana.utils.utils": [[13, 1, 1, "", "align_and_truncate_samples"], [13, 1, 1, "", "create_dir"], [13, 1, 1, "", "handle_tensor"], [13, 1, 1, "", "pad_array_to_length"], [13, 1, 1, "", "prepare_folder_structure"], [13, 1, 1, "", "prepare_optuna_folder_structure"], [13, 1, 1, "", "save_optuna_fig"], [13, 1, 1, "", "save_plots"], [13, 1, 1, "", "save_test_data"], [13, 1, 1, "", "standardize_dataset"]]}, "objtypes": {"0": "py:module", "1": "py:function", "2": "py:class", "3": "py:method", "4": "py:attribute"}, "objnames": {"0": ["py", "module", "Python module"], "1": ["py", "function", "Python function"], "2": ["py", "class", "Python class"], "3": ["py", "method", "Python method"], "4": ["py", "attribute", "Python attribute"]}, "titleterms": {"arcana": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 17, 19, 20], "packag": 0, "subpackag": [0, 3], "modul": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13], "content": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 17], "logger": 1, "submodul": [1, 2, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13], "loss": 2, "loss_trac": 2, "model": [3, 4, 5, 6, 20], "decod": 4, "additive_decod": 4, "base_decod": 4, "multihead_decod": 4, "encod": 5, "additive_encod": 5, "base_encod": 5, "multihead_encod": 5, "sequence_to_sequ": 6, "seq2seq_factori": 6, "plot": 7, "analysis_plot_util": 7, "plot_util": 7, "predict": [8, 9], "quantile_predict": 8, "procedur": 9, "config_handl": 9, "train": [9, 12], "tune": [9, 20], "process": 10, "data_process": 10, "regular": 11, "optimizer_schedul": 11, "stopping_criteria": 11, "teacher_forc": 11, "train_model": 12, "util": 13, "credit": 14, "develop": 14, "lead": 14, "contributor": 14, "contribut": 15, "type": 15, "report": 15, "bug": 15, "fix": 15, "implement": 15, "featur": [15, 20], "write": 15, "document": [15, 17], "submit": 15, "feedback": 15, "get": 15, "start": [15, 20], "pull": 15, "request": 15, "guidelin": 15, "deploi": 15, "histori": 16, "0": 16, "1": 16, "2023": 16, "02": 16, "01": 16, "08": 16, "25": 16, "12": 16, "welcom": 17, "": 17, "indic": 17, "tabl": 17, "instal": [18, 20], "stabl": 18, "releas": 18, "from": 18, "sourc": 18, "introduct": 20, "quick": 20, "configur": 20, "gener": 20, "architectur": 20, "citat": 20, "usag": 21}, "envversion": {"sphinx.domains.c": 3, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 9, "sphinx.domains.index": 1, "sphinx.domains.javascript": 3, "sphinx.domains.math": 2, "sphinx.domains.python": 4, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "sphinx": 58}, "alltitles": {"Arcana package": [[0, "arcana-package"]], "Subpackages": [[0, "subpackages"], [3, "subpackages"]], "Module contents": [[0, "module-arcana"], [1, "module-arcana.logger"], [2, "module-arcana.losses"], [3, "module-arcana.models"], [4, "module-arcana.models.decoders"], [5, "module-arcana.models.encoders"], [6, "module-arcana.models.sequence_to_sequence"], [7, "module-arcana.plots"], [8, "module-arcana.prediction"], [9, "module-arcana.procedures"], [10, "module-arcana.processing"], [11, "module-arcana.regularizations"], [12, "module-arcana.training"], [13, "module-arcana.utils"]], "Arcana Logger": [[1, "arcana-logger"]], "Submodules": [[1, "submodules"], [2, "submodules"], [4, "submodules"], [5, "submodules"], [6, "submodules"], [7, "submodules"], [8, "submodules"], [9, "submodules"], [10, "submodules"], [11, "submodules"], [12, "submodules"], [13, "submodules"]], "arcana.logger.logger module": [[1, "module-arcana.logger.logger"]], "Arcana Losses": [[2, "arcana-losses"]], "arcana.losses.loss module": [[2, "module-arcana.losses.loss"]], "arcana.losses.loss_trace module": [[2, "module-arcana.losses.loss_trace"]], "Arcana Models": [[3, "arcana-models"]], "Arcana Models: Decoders": [[4, "arcana-models-decoders"]], "arcana.models.decoders.additive_decoder module": [[4, "module-arcana.models.decoders.additive_decoder"]], "arcana.models.decoders.base_decoder module": [[4, "module-arcana.models.decoders.base_decoder"]], "arcana.models.decoders.multihead_decoder module": [[4, "module-arcana.models.decoders.multihead_decoder"]], "Arcana models: encoders": [[5, "arcana-models-encoders"]], "arcana.models.encoders.additive_encoder module": [[5, "module-arcana.models.encoders.additive_encoder"]], "arcana.models.encoders.base_encoder module": [[5, "module-arcana.models.encoders.base_encoder"]], "arcana.models.encoders.multihead_encoder module": [[5, "module-arcana.models.encoders.multihead_encoder"]], "Arcana Models: sequence_to_sequence": [[6, "arcana-models-sequence-to-sequence"]], "arcana.models.sequence_to_sequence.seq2seq_factory module": [[6, "module-arcana.models.sequence_to_sequence.seq2seq_factory"]], "arcana.models.sequence_to_sequence.sequence_to_sequence module": [[6, "module-arcana.models.sequence_to_sequence.sequence_to_sequence"]], "Arcana Plots": [[7, "arcana-plots"]], "arcana.plots.analysis_plot_utils module": [[7, "module-arcana.plots.analysis_plot_utils"]], "arcana.plots.plot_utils module": [[7, "module-arcana.plots.plot_utils"]], "arcana.plots.plots module": [[7, "module-arcana.plots.plots"]], "Arcana Prediction": [[8, "arcana-prediction"]], "arcana.prediction.quantile_prediction module": [[8, "module-arcana.prediction.quantile_prediction"]], "Arcana Procedures": [[9, "arcana-procedures"]], "arcana.procedures.config_handler module": [[9, "module-arcana.procedures.config_handler"]], "arcana.procedures.predicting module": [[9, "module-arcana.procedures.predicting"]], "arcana.procedures.training module": [[9, "module-arcana.procedures.training"]], "arcana.procedures.tuning module": [[9, "module-arcana.procedures.tuning"]], "Arcana Processing": [[10, "arcana-processing"]], "arcana.processing.data_processing module": [[10, "module-arcana.processing.data_processing"]], "Arcana Regularizations": [[11, "arcana-regularizations"]], "arcana.regularizations.optimizer_scheduler module": [[11, "module-arcana.regularizations.optimizer_scheduler"]], "arcana.regularizations.stopping_criteria module": [[11, "module-arcana.regularizations.stopping_criteria"]], "arcana.regularizations.teacher_forcing module": [[11, "module-arcana.regularizations.teacher_forcing"]], "Arcana Training": [[12, "arcana-training"]], "arcana.training.train_model module": [[12, "module-arcana.training.train_model"]], "Arcana Utils": [[13, "arcana-utils"]], "arcana.utils.utils module": [[13, "module-arcana.utils.utils"]], "Credits": [[14, "credits"]], "Development Lead": [[14, "development-lead"]], "Contributors": [[14, "contributors"]], "Contributing": [[15, "contributing"]], "Types of Contributions": [[15, "types-of-contributions"]], "Report Bugs": [[15, "report-bugs"]], "Fix Bugs": [[15, "fix-bugs"]], "Implement Features": [[15, "implement-features"]], "Write Documentation": [[15, "write-documentation"]], "Submit Feedback": [[15, "submit-feedback"]], "Get Started!": [[15, "get-started"]], "Pull Request Guidelines": [[15, "pull-request-guidelines"]], "Deploying": [[15, "deploying"]], "History": [[16, "history"]], "0.1.0 (2023-02-01)": [[16, "id1"]], "0.1.1 (2023-08-25)": [[16, "id2"]], "1.0.0 (2023-12-08)": [[16, "id3"]], "Welcome to Arcana\u2019s documentation!": [[17, "welcome-to-arcana-s-documentation"]], "Contents:": [[17, null]], "Indices and tables": [[17, "indices-and-tables"]], "Installation": [[18, "installation"], [20, "installation"]], "Stable release": [[18, "stable-release"]], "From sources": [[18, "from-sources"]], "arcana": [[19, "arcana"]], "ARCANA": [[20, "arcana"]], "Introduction": [[20, "introduction"]], "Features": [[20, "features"]], "Quick Start": [[20, "quick-start"]], "Configuration": [[20, "configuration"]], "General Configuration": [[20, "general-configuration"]], "Model Configuration": [[20, "model-configuration"]], "Tuning Configuration": [[20, "tuning-configuration"]], "Architecture": [[20, "architecture"]], "Citation": [[20, "citation"]], "Usage": [[21, "usage"]]}, "indexentries": {"arcana": [[0, "module-arcana"]], "module": [[0, "module-arcana"], [1, "module-arcana.logger"], [1, "module-arcana.logger.logger"], [2, "module-arcana.losses"], [2, "module-arcana.losses.loss"], [2, "module-arcana.losses.loss_trace"], [3, "module-arcana.models"], [4, "module-arcana.models.decoders"], [4, "module-arcana.models.decoders.additive_decoder"], [4, "module-arcana.models.decoders.base_decoder"], [4, "module-arcana.models.decoders.multihead_decoder"], [5, "module-arcana.models.encoders"], [5, "module-arcana.models.encoders.additive_encoder"], [5, "module-arcana.models.encoders.base_encoder"], [5, "module-arcana.models.encoders.multihead_encoder"], [6, "module-arcana.models.sequence_to_sequence"], [6, "module-arcana.models.sequence_to_sequence.seq2seq_factory"], [6, "module-arcana.models.sequence_to_sequence.sequence_to_sequence"], [7, "module-arcana.plots"], [7, "module-arcana.plots.analysis_plot_utils"], [7, "module-arcana.plots.plot_utils"], [7, "module-arcana.plots.plots"], [8, "module-arcana.prediction"], [8, "module-arcana.prediction.quantile_prediction"], [9, "module-arcana.procedures"], [9, "module-arcana.procedures.config_handler"], [9, "module-arcana.procedures.predicting"], [9, "module-arcana.procedures.training"], [9, "module-arcana.procedures.tuning"], [10, "module-arcana.processing"], [10, "module-arcana.processing.data_processing"], [11, "module-arcana.regularizations"], [11, "module-arcana.regularizations.optimizer_scheduler"], [11, "module-arcana.regularizations.stopping_criteria"], [11, "module-arcana.regularizations.teacher_forcing"], [12, "module-arcana.training"], [12, "module-arcana.training.train_model"], [13, "module-arcana.utils"], [13, "module-arcana.utils.utils"]], "arcana.logger": [[1, "module-arcana.logger"]], "arcana.logger.logger": [[1, "module-arcana.logger.logger"]], "get_logger() (in module arcana.logger.logger)": [[1, "arcana.logger.logger.get_logger"]], "setup_applevel_logger() (in module arcana.logger.logger)": [[1, "arcana.logger.logger.setup_applevel_logger"]], "combinedhploss (class in arcana.losses.loss)": [[2, "arcana.losses.loss.CombinedHPLoss"]], "combinedlploss (class in arcana.losses.loss)": [[2, "arcana.losses.loss.CombinedLPLoss"]], "huberloss (class in arcana.losses.loss)": [[2, "arcana.losses.loss.HuberLoss"]], "logcoshloss (class in arcana.losses.loss)": [[2, "arcana.losses.loss.LogCoshLoss"]], "lossfactory (class in arcana.losses.loss)": [[2, "arcana.losses.loss.LossFactory"]], "losstrace (class in arcana.losses.loss_trace)": [[2, "arcana.losses.loss_trace.LossTrace"]], "mseloss (class in arcana.losses.loss)": [[2, "arcana.losses.loss.MSELoss"]], "pinballloss (class in arcana.losses.loss)": [[2, "arcana.losses.loss.PinballLoss"]], "quantileloss (class in arcana.losses.loss)": [[2, "arcana.losses.loss.QuantileLoss"]], "arcana.losses": [[2, "module-arcana.losses"]], "arcana.losses.loss": [[2, "module-arcana.losses.loss"]], "arcana.losses.loss_trace": [[2, "module-arcana.losses.loss_trace"]], "calculate_batch_loss_train() (arcana.losses.loss_trace.losstrace method)": [[2, "arcana.losses.loss_trace.LossTrace.calculate_batch_loss_train"]], "calculate_batch_loss_validation() (arcana.losses.loss_trace.losstrace method)": [[2, "arcana.losses.loss_trace.LossTrace.calculate_batch_loss_validation"]], "calculate_epoch_loss() (arcana.losses.loss_trace.losstrace method)": [[2, "arcana.losses.loss_trace.LossTrace.calculate_epoch_loss"]], "create_loss() (arcana.losses.loss.lossfactory static method)": [[2, "arcana.losses.loss.LossFactory.create_loss"]], "forward() (arcana.losses.loss.combinedhploss method)": [[2, "arcana.losses.loss.CombinedHPLoss.forward"]], "forward() (arcana.losses.loss.combinedlploss method)": [[2, "arcana.losses.loss.CombinedLPLoss.forward"]], "forward() (arcana.losses.loss.logcoshloss method)": [[2, "arcana.losses.loss.LogCoshLoss.forward"]], "forward() (arcana.losses.loss.pinballloss method)": [[2, "arcana.losses.loss.PinballLoss.forward"]], "forward() (arcana.losses.loss.quantileloss method)": [[2, "arcana.losses.loss.QuantileLoss.forward"]], "is_numpy() (in module arcana.losses.loss)": [[2, "arcana.losses.loss.is_numpy"]], "is_tensor() (in module arcana.losses.loss)": [[2, "arcana.losses.loss.is_tensor"]], "pinball_loss_numpy() (arcana.losses.loss.pinballloss method)": [[2, "arcana.losses.loss.PinballLoss.pinball_loss_numpy"]], "reset_temp_loss_trace() (arcana.losses.loss_trace.losstrace method)": [[2, "arcana.losses.loss_trace.LossTrace.reset_temp_loss_trace"]], "to_numpy() (in module arcana.losses.loss)": [[2, "arcana.losses.loss.to_numpy"]], "to_tensor() (in module arcana.losses.loss)": [[2, "arcana.losses.loss.to_tensor"]], "arcana.models": [[3, "module-arcana.models"]], "additivedecoder (class in arcana.models.decoders.additive_decoder)": [[4, "arcana.models.decoders.additive_decoder.AdditiveDecoder"]], "attention (class in arcana.models.decoders.additive_decoder)": [[4, "arcana.models.decoders.additive_decoder.Attention"]], "basedecoder (class in arcana.models.decoders.base_decoder)": [[4, "arcana.models.decoders.base_decoder.BaseDecoder"]], "multiheaddecoder (class in arcana.models.decoders.multihead_decoder)": [[4, "arcana.models.decoders.multihead_decoder.MultiheadDecoder"]], "arcana.models.decoders": [[4, "module-arcana.models.decoders"]], "arcana.models.decoders.additive_decoder": [[4, "module-arcana.models.decoders.additive_decoder"]], "arcana.models.decoders.base_decoder": [[4, "module-arcana.models.decoders.base_decoder"]], "arcana.models.decoders.multihead_decoder": [[4, "module-arcana.models.decoders.multihead_decoder"]], "forward() (arcana.models.decoders.additive_decoder.additivedecoder method)": [[4, "arcana.models.decoders.additive_decoder.AdditiveDecoder.forward"]], "forward() (arcana.models.decoders.additive_decoder.attention method)": [[4, "arcana.models.decoders.additive_decoder.Attention.forward"]], "forward() (arcana.models.decoders.base_decoder.basedecoder method)": [[4, "arcana.models.decoders.base_decoder.BaseDecoder.forward"]], "forward() (arcana.models.decoders.multihead_decoder.multiheaddecoder method)": [[4, "arcana.models.decoders.multihead_decoder.MultiheadDecoder.forward"]], "initialize_weights() (in module arcana.models.decoders.base_decoder)": [[4, "arcana.models.decoders.base_decoder.initialize_weights"]], "additiveencoder (class in arcana.models.encoders.additive_encoder)": [[5, "arcana.models.encoders.additive_encoder.AdditiveEncoder"]], "baseencoder (class in arcana.models.encoders.base_encoder)": [[5, "arcana.models.encoders.base_encoder.BaseEncoder"]], "multiheadencoder (class in arcana.models.encoders.multihead_encoder)": [[5, "arcana.models.encoders.multihead_encoder.MultiheadEncoder"]], "arcana.models.encoders": [[5, "module-arcana.models.encoders"]], "arcana.models.encoders.additive_encoder": [[5, "module-arcana.models.encoders.additive_encoder"]], "arcana.models.encoders.base_encoder": [[5, "module-arcana.models.encoders.base_encoder"]], "arcana.models.encoders.multihead_encoder": [[5, "module-arcana.models.encoders.multihead_encoder"]], "forward() (arcana.models.encoders.additive_encoder.additiveencoder method)": [[5, "arcana.models.encoders.additive_encoder.AdditiveEncoder.forward"]], "forward() (arcana.models.encoders.base_encoder.baseencoder method)": [[5, "arcana.models.encoders.base_encoder.BaseEncoder.forward"]], "forward() (arcana.models.encoders.multihead_encoder.multiheadencoder method)": [[5, "arcana.models.encoders.multihead_encoder.MultiheadEncoder.forward"]], "reset_hidden_state() (arcana.models.encoders.base_encoder.baseencoder method)": [[5, "arcana.models.encoders.base_encoder.BaseEncoder.reset_hidden_state"]], "seq2seq (class in arcana.models.sequence_to_sequence.sequence_to_sequence)": [[6, "arcana.models.sequence_to_sequence.sequence_to_sequence.Seq2Seq"]], "seq2seqfactory (class in arcana.models.sequence_to_sequence.seq2seq_factory)": [[6, "arcana.models.sequence_to_sequence.seq2seq_factory.Seq2SeqFactory"]], "arcana.models.sequence_to_sequence": [[6, "module-arcana.models.sequence_to_sequence"]], "arcana.models.sequence_to_sequence.seq2seq_factory": [[6, "module-arcana.models.sequence_to_sequence.seq2seq_factory"]], "arcana.models.sequence_to_sequence.sequence_to_sequence": [[6, "module-arcana.models.sequence_to_sequence.sequence_to_sequence"]], "count_parameters() (arcana.models.sequence_to_sequence.seq2seq_factory.seq2seqfactory method)": [[6, "arcana.models.sequence_to_sequence.seq2seq_factory.Seq2SeqFactory.count_parameters"]], "create_additive_model() (arcana.models.sequence_to_sequence.seq2seq_factory.seq2seqfactory method)": [[6, "arcana.models.sequence_to_sequence.seq2seq_factory.Seq2SeqFactory.create_additive_model"]], "create_multihead_model() (arcana.models.sequence_to_sequence.seq2seq_factory.seq2seqfactory method)": [[6, "arcana.models.sequence_to_sequence.seq2seq_factory.Seq2SeqFactory.create_multihead_model"]], "forward() (arcana.models.sequence_to_sequence.sequence_to_sequence.seq2seq method)": [[6, "arcana.models.sequence_to_sequence.sequence_to_sequence.Seq2Seq.forward"]], "print_weights() (arcana.models.sequence_to_sequence.seq2seq_factory.seq2seqfactory method)": [[6, "arcana.models.sequence_to_sequence.seq2seq_factory.Seq2SeqFactory.print_weights"]], "analysisplotutils (class in arcana.plots.analysis_plot_utils)": [[7, "arcana.plots.analysis_plot_utils.AnalysisPlotUtils"]], "plots (class in arcana.plots.plots)": [[7, "arcana.plots.plots.Plots"]], "scalarformatterforceformat (class in arcana.plots.analysis_plot_utils)": [[7, "arcana.plots.analysis_plot_utils.ScalarFormatterForceFormat"]], "arcana.plots": [[7, "module-arcana.plots"]], "arcana.plots.analysis_plot_utils": [[7, "module-arcana.plots.analysis_plot_utils"]], "arcana.plots.plot_utils": [[7, "module-arcana.plots.plot_utils"]], "arcana.plots.plots": [[7, "module-arcana.plots.plots"]], "plot_additive_attention() (arcana.plots.analysis_plot_utils.analysisplotutils method)": [[7, "arcana.plots.analysis_plot_utils.AnalysisPlotUtils.plot_additive_attention"]], "plot_all_multihead_attention() (arcana.plots.analysis_plot_utils.analysisplotutils method)": [[7, "arcana.plots.analysis_plot_utils.AnalysisPlotUtils.plot_all_multihead_attention"]], "plot_line() (arcana.plots.plots.plots method)": [[7, "arcana.plots.plots.Plots.plot_line"]], "plot_model_learning_rate() (in module arcana.plots.plot_utils)": [[7, "arcana.plots.plot_utils.plot_model_learning_rate"]], "plot_sample_prediction() (in module arcana.plots.plot_utils)": [[7, "arcana.plots.plot_utils.plot_sample_prediction"]], "plot_scatter() (arcana.plots.plots.plots method)": [[7, "arcana.plots.plots.Plots.plot_scatter"]], "plot_sensitivity_analyis() (arcana.plots.analysis_plot_utils.analysisplotutils method)": [[7, "arcana.plots.analysis_plot_utils.AnalysisPlotUtils.plot_sensitivity_analyis"]], "plot_train_val_loss() (in module arcana.plots.plot_utils)": [[7, "arcana.plots.plot_utils.plot_train_val_loss"]], "plot_train_val_loss_individual() (in module arcana.plots.plot_utils)": [[7, "arcana.plots.plot_utils.plot_train_val_loss_individual"]], "set_labels() (arcana.plots.plots.plots method)": [[7, "arcana.plots.plots.Plots.set_labels"]], "quantilepredictor (class in arcana.prediction.quantile_prediction)": [[8, "arcana.prediction.quantile_prediction.QuantilePredictor"]], "apply_correct_exogenous() (arcana.prediction.quantile_prediction.quantilepredictor method)": [[8, "arcana.prediction.quantile_prediction.QuantilePredictor.apply_correct_exogenous"]], "arcana.prediction": [[8, "module-arcana.prediction"]], "arcana.prediction.quantile_prediction": [[8, "module-arcana.prediction.quantile_prediction"]], "calculate_metrics() (arcana.prediction.quantile_prediction.quantilepredictor method)": [[8, "arcana.prediction.quantile_prediction.QuantilePredictor.calculate_metrics"]], "metrics_helper() (in module arcana.prediction.quantile_prediction)": [[8, "arcana.prediction.quantile_prediction.metrics_helper"]], "metrics_preparation() (arcana.prediction.quantile_prediction.quantilepredictor method)": [[8, "arcana.prediction.quantile_prediction.QuantilePredictor.metrics_preparation"]], "plot_analysis() (arcana.prediction.quantile_prediction.quantilepredictor method)": [[8, "arcana.prediction.quantile_prediction.QuantilePredictor.plot_analysis"]], "plot_predictions() (arcana.prediction.quantile_prediction.quantilepredictor method)": [[8, "arcana.prediction.quantile_prediction.QuantilePredictor.plot_predictions"]], "predict_data_preparation() (arcana.prediction.quantile_prediction.quantilepredictor method)": [[8, "arcana.prediction.quantile_prediction.QuantilePredictor.predict_data_preparation"]], "predict_quantiles() (arcana.prediction.quantile_prediction.quantilepredictor method)": [[8, "arcana.prediction.quantile_prediction.QuantilePredictor.predict_quantiles"]], "save_attention() (arcana.prediction.quantile_prediction.quantilepredictor method)": [[8, "arcana.prediction.quantile_prediction.QuantilePredictor.save_attention"]], "save_metrics() (arcana.prediction.quantile_prediction.quantilepredictor method)": [[8, "arcana.prediction.quantile_prediction.QuantilePredictor.save_metrics"]], "save_predictions() (arcana.prediction.quantile_prediction.quantilepredictor method)": [[8, "arcana.prediction.quantile_prediction.QuantilePredictor.save_predictions"]], "save_sensitivity() (arcana.prediction.quantile_prediction.quantilepredictor method)": [[8, "arcana.prediction.quantile_prediction.QuantilePredictor.save_sensitivity"]], "save_transformed_predictions() (arcana.prediction.quantile_prediction.quantilepredictor method)": [[8, "arcana.prediction.quantile_prediction.QuantilePredictor.save_transformed_predictions"]], "transform_predictions_to_numpy() (arcana.prediction.quantile_prediction.quantilepredictor method)": [[8, "arcana.prediction.quantile_prediction.QuantilePredictor.transform_predictions_to_numpy"]], "confighandler (class in arcana.procedures.config_handler)": [[9, "arcana.procedures.config_handler.ConfigHandler"]], "dataconfig (class in arcana.procedures.config_handler)": [[9, "arcana.procedures.config_handler.DataConfig"]], "generalconfig (class in arcana.procedures.config_handler)": [[9, "arcana.procedures.config_handler.GeneralConfig"]], "modelconfig (class in arcana.procedures.config_handler)": [[9, "arcana.procedures.config_handler.ModelConfig"]], "predictprocedure (class in arcana.procedures.predicting)": [[9, "arcana.procedures.predicting.PredictProcedure"]], "procedureconfig (class in arcana.procedures.config_handler)": [[9, "arcana.procedures.config_handler.ProcedureConfig"]], "trainprocedure (class in arcana.procedures.training)": [[9, "arcana.procedures.training.TrainProcedure"]], "tuneprocedure (class in arcana.procedures.tuning)": [[9, "arcana.procedures.tuning.TuneProcedure"]], "all_preparation() (arcana.procedures.predicting.predictprocedure method)": [[9, "arcana.procedures.predicting.PredictProcedure.all_preparation"]], "arcana.procedures": [[9, "module-arcana.procedures"]], "arcana.procedures.config_handler": [[9, "module-arcana.procedures.config_handler"]], "arcana.procedures.predicting": [[9, "module-arcana.procedures.predicting"]], "arcana.procedures.training": [[9, "module-arcana.procedures.training"]], "arcana.procedures.tuning": [[9, "module-arcana.procedures.tuning"]], "attention_type (arcana.procedures.config_handler.procedureconfig attribute)": [[9, "arcana.procedures.config_handler.ProcedureConfig.attention_type"]], "data_headers (arcana.procedures.config_handler.dataconfig attribute)": [[9, "arcana.procedures.config_handler.DataConfig.data_headers"]], "data_name (arcana.procedures.config_handler.generalconfig attribute)": [[9, "arcana.procedures.config_handler.GeneralConfig.data_name"]], "data_splits() (arcana.procedures.training.trainprocedure method)": [[9, "arcana.procedures.training.TrainProcedure.data_splits"]], "get_data_config() (arcana.procedures.config_handler.confighandler method)": [[9, "arcana.procedures.config_handler.ConfigHandler.get_data_config"]], "get_general_config() (arcana.procedures.config_handler.confighandler method)": [[9, "arcana.procedures.config_handler.ConfigHandler.get_general_config"]], "get_model_config() (arcana.procedures.config_handler.confighandler method)": [[9, "arcana.procedures.config_handler.ConfigHandler.get_model_config"]], "get_pretrained_model() (arcana.procedures.predicting.predictprocedure method)": [[9, "arcana.procedures.predicting.PredictProcedure.get_pretrained_model"]], "get_procedure_config() (arcana.procedures.config_handler.confighandler method)": [[9, "arcana.procedures.config_handler.ConfigHandler.get_procedure_config"]], "get_test_data() (arcana.procedures.predicting.predictprocedure method)": [[9, "arcana.procedures.predicting.PredictProcedure.get_test_data"]], "input_data_folder (arcana.procedures.config_handler.generalconfig attribute)": [[9, "arcana.procedures.config_handler.GeneralConfig.input_data_folder"]], "learning_rate_type (arcana.procedures.config_handler.procedureconfig attribute)": [[9, "arcana.procedures.config_handler.ProcedureConfig.learning_rate_type"]], "loader_initialization() (arcana.procedures.training.trainprocedure method)": [[9, "arcana.procedures.training.TrainProcedure.loader_initialization"]], "maximum_available_cycles (arcana.procedures.config_handler.dataconfig attribute)": [[9, "arcana.procedures.config_handler.DataConfig.maximum_available_cycles"]], "model_parameter_initialization() (arcana.procedures.training.trainprocedure method)": [[9, "arcana.procedures.training.TrainProcedure.model_parameter_initialization"]], "naive_training (arcana.procedures.config_handler.procedureconfig attribute)": [[9, "arcana.procedures.config_handler.ProcedureConfig.naive_training"]], "number_of_samples (arcana.procedures.config_handler.dataconfig attribute)": [[9, "arcana.procedures.config_handler.DataConfig.number_of_samples"]], "number_of_trials (arcana.procedures.config_handler.procedureconfig attribute)": [[9, "arcana.procedures.config_handler.ProcedureConfig.number_of_trials"]], "optuna_tuning (arcana.procedures.config_handler.procedureconfig attribute)": [[9, "arcana.procedures.config_handler.ProcedureConfig.optuna_tuning"]], "path_to_config (arcana.procedures.config_handler.dataconfig attribute)": [[9, "arcana.procedures.config_handler.DataConfig.path_to_config"]], "path_to_config (arcana.procedures.config_handler.generalconfig attribute)": [[9, "arcana.procedures.config_handler.GeneralConfig.path_to_config"]], "path_to_config (arcana.procedures.config_handler.procedureconfig attribute)": [[9, "arcana.procedures.config_handler.ProcedureConfig.path_to_config"]], "predicting (arcana.procedures.config_handler.procedureconfig attribute)": [[9, "arcana.procedures.config_handler.ProcedureConfig.predicting"]], "predicting() (arcana.procedures.predicting.predictprocedure method)": [[9, "arcana.procedures.predicting.PredictProcedure.predicting"]], "predicting_all() (arcana.procedures.predicting.predictprocedure method)": [[9, "arcana.procedures.predicting.PredictProcedure.predicting_all"]], "preparation() (arcana.procedures.predicting.predictprocedure method)": [[9, "arcana.procedures.predicting.PredictProcedure.preparation"]], "preprocess_data (arcana.procedures.config_handler.procedureconfig attribute)": [[9, "arcana.procedures.config_handler.ProcedureConfig.preprocess_data"]], "pretrained_model (arcana.procedures.config_handler.generalconfig attribute)": [[9, "arcana.procedures.config_handler.GeneralConfig.pretrained_model"]], "read_tuning_conf() (arcana.procedures.config_handler.modelconfig method)": [[9, "arcana.procedures.config_handler.ModelConfig.read_tuning_conf"]], "rename_trials() (arcana.procedures.tuning.tuneprocedure method)": [[9, "arcana.procedures.tuning.TuneProcedure.rename_trials"]], "save_data_splits() (arcana.procedures.training.trainprocedure method)": [[9, "arcana.procedures.training.TrainProcedure.save_data_splits"]], "save_model_parameters() (arcana.procedures.training.trainprocedure method)": [[9, "arcana.procedures.training.TrainProcedure.save_model_parameters"]], "save_tuning_params() (arcana.procedures.tuning.tuneprocedure method)": [[9, "arcana.procedures.tuning.TuneProcedure.save_tuning_params"]], "scaler_model (arcana.procedures.config_handler.generalconfig attribute)": [[9, "arcana.procedures.config_handler.GeneralConfig.scaler_model"]], "set_device() (arcana.procedures.training.trainprocedure method)": [[9, "arcana.procedures.training.TrainProcedure.set_device"]], "test_id (arcana.procedures.config_handler.generalconfig attribute)": [[9, "arcana.procedures.config_handler.GeneralConfig.test_id"]], "test_sample (arcana.procedures.config_handler.dataconfig attribute)": [[9, "arcana.procedures.config_handler.DataConfig.test_sample"]], "train_element_initialization() (arcana.procedures.training.trainprocedure method)": [[9, "arcana.procedures.training.TrainProcedure.train_element_initialization"]], "train_ratio (arcana.procedures.config_handler.dataconfig attribute)": [[9, "arcana.procedures.config_handler.DataConfig.train_ratio"]], "training() (arcana.procedures.training.trainprocedure method)": [[9, "arcana.procedures.training.TrainProcedure.training"]], "transfer_learning (arcana.procedures.config_handler.procedureconfig attribute)": [[9, "arcana.procedures.config_handler.ProcedureConfig.transfer_learning"]], "tuning() (arcana.procedures.tuning.tuneprocedure method)": [[9, "arcana.procedures.tuning.TuneProcedure.tuning"]], "val_test_ratio (arcana.procedures.config_handler.dataconfig attribute)": [[9, "arcana.procedures.config_handler.DataConfig.val_test_ratio"]], "datapreparation (class in arcana.processing.data_processing)": [[10, "arcana.processing.data_processing.DataPreparation"]], "arcana.processing": [[10, "module-arcana.processing"]], "arcana.processing.data_processing": [[10, "module-arcana.processing.data_processing"]], "data_splits() (arcana.processing.data_processing.datapreparation method)": [[10, "arcana.processing.data_processing.DataPreparation.data_splits"]], "get_data_for_model() (arcana.processing.data_processing.datapreparation method)": [[10, "arcana.processing.data_processing.DataPreparation.get_data_for_model"]], "get_max_available_scaled_cycle() (arcana.processing.data_processing.datapreparation method)": [[10, "arcana.processing.data_processing.DataPreparation.get_max_available_scaled_cycle"]], "pad_the_splits() (arcana.processing.data_processing.datapreparation method)": [[10, "arcana.processing.data_processing.DataPreparation.pad_the_splits"]], "prepare_data_for_model() (arcana.processing.data_processing.datapreparation method)": [[10, "arcana.processing.data_processing.DataPreparation.prepare_data_for_model"]], "prepare_test_data_for_pretrained_model() (arcana.processing.data_processing.datapreparation method)": [[10, "arcana.processing.data_processing.DataPreparation.prepare_test_data_for_pretrained_model"]], "standardize_data() (arcana.processing.data_processing.datapreparation method)": [[10, "arcana.processing.data_processing.DataPreparation.standardize_data"]], "tensorized_and_pad() (arcana.processing.data_processing.datapreparation method)": [[10, "arcana.processing.data_processing.DataPreparation.tensorized_and_pad"]], "earlystopping (class in arcana.regularizations.stopping_criteria)": [[11, "arcana.regularizations.stopping_criteria.EarlyStopping"]], "schedulerfactory (class in arcana.regularizations.optimizer_scheduler)": [[11, "arcana.regularizations.optimizer_scheduler.SchedulerFactory"]], "teacherforcingscheduler (class in arcana.regularizations.teacher_forcing)": [[11, "arcana.regularizations.teacher_forcing.TeacherForcingScheduler"]], "arcana.regularizations": [[11, "module-arcana.regularizations"]], "arcana.regularizations.optimizer_scheduler": [[11, "module-arcana.regularizations.optimizer_scheduler"]], "arcana.regularizations.stopping_criteria": [[11, "module-arcana.regularizations.stopping_criteria"]], "arcana.regularizations.teacher_forcing": [[11, "module-arcana.regularizations.teacher_forcing"]], "get_ratio() (arcana.regularizations.teacher_forcing.teacherforcingscheduler method)": [[11, "arcana.regularizations.teacher_forcing.TeacherForcingScheduler.get_ratio"]], "get_scheduler() (arcana.regularizations.optimizer_scheduler.schedulerfactory method)": [[11, "arcana.regularizations.optimizer_scheduler.SchedulerFactory.get_scheduler"]], "step() (arcana.regularizations.stopping_criteria.earlystopping method)": [[11, "arcana.regularizations.stopping_criteria.EarlyStopping.step"]], "seq2seqtrainer (class in arcana.training.train_model)": [[12, "arcana.training.train_model.Seq2SeqTrainer"]], "arcana.training": [[12, "module-arcana.training"]], "arcana.training.train_model": [[12, "module-arcana.training.train_model"]], "calculate_overall_combined_loss() (arcana.training.train_model.seq2seqtrainer method)": [[12, "arcana.training.train_model.Seq2SeqTrainer.calculate_overall_combined_loss"]], "calculate_overall_loss() (arcana.training.train_model.seq2seqtrainer method)": [[12, "arcana.training.train_model.Seq2SeqTrainer.calculate_overall_loss"]], "compute_loss() (arcana.training.train_model.seq2seqtrainer method)": [[12, "arcana.training.train_model.Seq2SeqTrainer.compute_loss"]], "count_parameters() (arcana.training.train_model.seq2seqtrainer method)": [[12, "arcana.training.train_model.Seq2SeqTrainer.count_parameters"]], "early_stopping_check() (arcana.training.train_model.seq2seqtrainer method)": [[12, "arcana.training.train_model.Seq2SeqTrainer.early_stopping_check"]], "initialize_training() (arcana.training.train_model.seq2seqtrainer method)": [[12, "arcana.training.train_model.Seq2SeqTrainer.initialize_training"]], "plot_training_params() (arcana.training.train_model.seq2seqtrainer method)": [[12, "arcana.training.train_model.Seq2SeqTrainer.plot_training_params"]], "save_training_results_and_plots() (arcana.training.train_model.seq2seqtrainer method)": [[12, "arcana.training.train_model.Seq2SeqTrainer.save_training_results_and_plots"]], "train_epoch() (arcana.training.train_model.seq2seqtrainer method)": [[12, "arcana.training.train_model.Seq2SeqTrainer.train_epoch"]], "train_model() (arcana.training.train_model.seq2seqtrainer method)": [[12, "arcana.training.train_model.Seq2SeqTrainer.train_model"]], "update_training_params() (arcana.training.train_model.seq2seqtrainer method)": [[12, "arcana.training.train_model.Seq2SeqTrainer.update_training_params"]], "validation_epoch() (arcana.training.train_model.seq2seqtrainer method)": [[12, "arcana.training.train_model.Seq2SeqTrainer.validation_epoch"]], "align_and_truncate_samples() (in module arcana.utils.utils)": [[13, "arcana.utils.utils.align_and_truncate_samples"]], "arcana.utils": [[13, "module-arcana.utils"]], "arcana.utils.utils": [[13, "module-arcana.utils.utils"]], "create_dir() (in module arcana.utils.utils)": [[13, "arcana.utils.utils.create_dir"]], "handle_tensor() (in module arcana.utils.utils)": [[13, "arcana.utils.utils.handle_tensor"]], "pad_array_to_length() (in module arcana.utils.utils)": [[13, "arcana.utils.utils.pad_array_to_length"]], "prepare_folder_structure() (in module arcana.utils.utils)": [[13, "arcana.utils.utils.prepare_folder_structure"]], "prepare_optuna_folder_structure() (in module arcana.utils.utils)": [[13, "arcana.utils.utils.prepare_optuna_folder_structure"]], "save_optuna_fig() (in module arcana.utils.utils)": [[13, "arcana.utils.utils.save_optuna_fig"]], "save_plots() (in module arcana.utils.utils)": [[13, "arcana.utils.utils.save_plots"]], "save_test_data() (in module arcana.utils.utils)": [[13, "arcana.utils.utils.save_test_data"]], "standardize_dataset() (in module arcana.utils.utils)": [[13, "arcana.utils.utils.standardize_dataset"]]}}) \ No newline at end of file +Search.setIndex({"docnames": ["arcana", "arcana.logger", "arcana.losses", "arcana.models", "arcana.models.decoders", "arcana.models.encoders", "arcana.models.sequence_to_sequence", "arcana.plots", "arcana.prediction", "arcana.procedures", "arcana.processing", "arcana.regularizations", "arcana.training", "arcana.utils", "authors", "contributing", "history", "index", "installation", "modules", "readme", "usage"], "filenames": ["arcana.rst", "arcana.logger.rst", "arcana.losses.rst", "arcana.models.rst", "arcana.models.decoders.rst", "arcana.models.encoders.rst", "arcana.models.sequence_to_sequence.rst", "arcana.plots.rst", "arcana.prediction.rst", "arcana.procedures.rst", "arcana.processing.rst", "arcana.regularizations.rst", "arcana.training.rst", "arcana.utils.rst", "authors.rst", "contributing.rst", "history.rst", "index.rst", "installation.rst", "modules.rst", "readme.rst", "usage.rst"], "titles": ["Arcana package", "Arcana Logger", "Arcana Losses", "Arcana Models", "Arcana Models: Decoders", "Arcana models: encoders", "Arcana Models: sequence_to_sequence", "Arcana Plots", "Arcana Prediction", "Arcana Procedures", "Arcana Processing", "Arcana Regularizations", "Arcana Training", "Arcana Utils", "Credits", "Contributing", "History", "Welcome to Arcana\u2019s documentation!", "Installation", "arcana", "ARCANA", "Usage"], "terms": {"logger": [0, 17, 19, 20], "submodul": [0, 3, 19], "get_logg": [0, 1, 19, 20], "setup_applevel_logg": [0, 1, 19, 20], "loss": [0, 7, 11, 12, 17, 19, 20], "combinedhploss": [0, 2, 19], "forward": [0, 2, 3, 4, 5, 6, 12, 19], "combinedlploss": [0, 2, 19], "huberloss": [0, 2, 19], "logcoshloss": [0, 2, 19], "lossfactori": [0, 2, 19], "create_loss": [0, 2, 19], "mseloss": [0, 2, 19], "pinballloss": [0, 2, 19], "pinball_loss_numpi": [0, 2, 19], "quantileloss": [0, 2, 19], "is_numpi": [0, 2, 19], "is_tensor": [0, 2, 19], "to_numpi": [0, 2, 19], "to_tensor": [0, 2, 19], "loss_trac": [0, 12, 19], "losstrac": [0, 2, 19], "calculate_batch_loss_train": [0, 2, 19], "calculate_batch_loss_valid": [0, 2, 19], "calculate_epoch_loss": [0, 2, 19], "reset_temp_loss_trac": [0, 2, 19], "model": [0, 2, 7, 8, 9, 10, 12, 13, 17, 19], "decod": [0, 3, 6, 19, 20], "additive_decod": [0, 3, 19], "base_decod": [0, 3, 19], "multihead_decod": [0, 3, 19], "encod": [0, 3, 4, 6, 7, 19, 20], "additive_encod": [0, 3, 19], "base_encod": [0, 3, 19], "multihead_encod": [0, 3, 19], "sequence_to_sequ": [0, 3, 19], "seq2seq_factori": [0, 3, 19], "plot": [0, 8, 9, 12, 13, 17, 19], "analysis_plot_util": [0, 19], "analysisplotutil": [0, 7, 19], "plot_additive_attent": [0, 7, 19], "plot_all_multihead_attent": [0, 7, 19], "plot_sensitivity_analyi": [0, 7, 19], "scalarformatterforceformat": [0, 7, 19], "plot_util": [0, 19], "plot_model_learning_r": [0, 7, 19], "plot_sample_predict": [0, 7, 19], "plot_train_val_loss": [0, 7, 19], "plot_train_val_loss_individu": [0, 7, 19], "plot_lin": [0, 7, 19], "plot_scatt": [0, 7, 19], "set_label": [0, 7, 19], "predict": [0, 2, 4, 6, 7, 12, 13, 17, 19, 20], "quantile_predict": [0, 19], "quantilepredictor": [0, 8, 19], "apply_correct_exogen": [0, 8, 19], "calculate_metr": [0, 8, 19], "metrics_prepar": [0, 8, 19], "plot_analysi": [0, 8, 19], "plot_predict": [0, 8, 9, 19], "predict_data_prepar": [0, 8, 19], "predict_quantil": [0, 8, 19], "save_attent": [0, 8, 19], "save_metr": [0, 8, 19], "save_predict": [0, 8, 19], "save_sensit": [0, 8, 19], "save_transformed_predict": [0, 8, 19], "transform_predictions_to_numpi": [0, 8, 19], "metrics_help": [0, 8, 19], "procedur": [0, 17, 19, 20], "config_handl": [0, 19], "confighandl": [0, 9, 19], "get_data_config": [0, 9, 19], "get_general_config": [0, 9, 19], "get_model_config": [0, 9, 19], "get_procedure_config": [0, 9, 19], "dataconfig": [0, 9, 19], "data_head": [0, 9, 19], "maximum_available_cycl": [0, 9, 19], "number_of_sampl": [0, 9, 19], "path_to_config": [0, 9, 19], "test_sampl": [0, 9, 19], "train_ratio": [0, 9, 19], "val_test_ratio": [0, 9, 19], "generalconfig": [0, 9, 19], "data_nam": [0, 9, 19], "input_data_fold": [0, 9, 19], "pretrained_model": [0, 8, 9, 19], "scaler_model": [0, 9, 19], "test_id": [0, 9, 13, 19], "modelconfig": [0, 2, 9, 19], "read_tuning_conf": [0, 9, 19], "procedureconfig": [0, 9, 19], "attention_typ": [0, 9, 19], "learning_rate_typ": [0, 9, 11, 19], "naive_train": [0, 9, 19, 20], "number_of_tri": [0, 9, 19], "optuna_tun": [0, 9, 19, 20], "preprocess_data": [0, 9, 19], "transfer_learn": [0, 9, 19, 20], "predictprocedur": [0, 9, 19, 20], "all_prepar": [0, 9, 19], "get_pretrained_model": [0, 9, 19], "get_test_data": [0, 9, 19], "predicting_al": [0, 9, 19], "prepar": [0, 8, 9, 10, 13, 19, 20], "train": [0, 2, 7, 10, 11, 17, 19, 20], "trainprocedur": [0, 9, 19, 20], "data_split": [0, 9, 10, 19], "loader_initi": [0, 9, 19], "model_parameter_initi": [0, 9, 19], "save_data_split": [0, 9, 19], "save_model_paramet": [0, 9, 19], "set_devic": [0, 9, 19], "train_element_initi": [0, 9, 19], "tune": [0, 17, 19], "tuneprocedur": [0, 9, 19, 20], "rename_tri": [0, 9, 19], "save_tuning_param": [0, 9, 19], "process": [0, 12, 17, 18, 19, 20], "data_process": [0, 19], "dataprepar": [0, 10, 19], "get_data_for_model": [0, 10, 19], "get_max_available_scaled_cycl": [0, 10, 19], "pad_the_split": [0, 10, 19], "prepare_data_for_model": [0, 10, 19], "prepare_test_data_for_pretrained_model": [0, 10, 19], "standardize_data": [0, 10, 19], "tensorized_and_pad": [0, 10, 19], "regular": [0, 17, 19, 20], "optimizer_schedul": [0, 19], "schedulerfactori": [0, 11, 19], "get_schedul": [0, 11, 19], "stopping_criteria": [0, 19], "earlystop": [0, 11, 19], "step": [0, 7, 8, 11, 15, 19, 20], "teacher_forc": [0, 19], "teacherforcingschedul": [0, 11, 19], "get_ratio": [0, 11, 19], "train_model": [0, 19], "seq2seqtrain": [0, 12, 19], "calculate_overall_combined_loss": [0, 12, 19], "calculate_overall_loss": [0, 12, 19], "compute_loss": [0, 12, 19], "count_paramet": [0, 3, 6, 12, 19], "early_stopping_check": [0, 12, 19], "initialize_train": [0, 12, 19], "plot_training_param": [0, 12, 19], "save_training_results_and_plot": [0, 12, 19], "train_epoch": [0, 12, 19], "update_training_param": [0, 12, 19], "validation_epoch": [0, 12, 19], "util": [0, 2, 12, 17, 19, 20], "align_and_truncate_sampl": [0, 13, 19], "create_dir": [0, 13, 19], "handle_tensor": [0, 13, 19], "pad_array_to_length": [0, 13, 19], "prepare_folder_structur": [0, 13, 19], "prepare_optuna_folder_structur": [0, 13, 19], "save_optuna_fig": [0, 13, 19], "save_plot": [0, 13, 19], "save_test_data": [0, 13, 19], "standardize_dataset": [0, 13, 19], "top": 0, "level": [0, 1, 20], "thi": [1, 7, 8, 9, 10, 12, 15, 18, 20], "defin": [1, 11, 20], "our": 1, "applic": [1, 20], "The": [1, 4, 6, 7, 9, 11, 12, 15, 18, 20], "file": [1, 9, 20], "i": [1, 2, 4, 6, 9, 10, 11, 13, 15, 18, 20], "adopt": 1, "copi": [1, 15, 18], "from": [1, 2, 6, 7, 16, 17, 20], "madap": 1, "project": [1, 4, 5, 15, 16, 21], "fuzhan": [1, 14], "rahmanian": [1, 14, 20], "cite": [1, 20], "http": [1, 15, 18, 20], "github": [1, 15, 16, 18, 20], "com": [1, 14, 15, 18, 20], "fuzhanrahmanian": [1, 14], "module_nam": 1, "return": [1, 2, 4, 5, 6, 8, 9, 10, 11, 12, 13], "name": [1, 7, 13, 15, 20], "call": 1, "function": [1, 2, 7, 8, 9, 10, 11, 12, 13, 15, 20], "param": [1, 7, 9, 13], "type": [1, 7, 9, 11, 13, 17, 20], "str": [1, 7, 9, 11, 12, 13], "log": [1, 2, 20], "logger_nam": 1, "file_nam": [1, 20], "none": [1, 2, 7, 9, 11, 12, 13, 14], "set": [1, 7, 9, 15, 20], "up": [1, 11, 13, 15, 20], "app": 1, "default": [1, 2, 7, 9, 13], "app_logger_nam": 1, "option": [1, 2, 7, 13], "custom": [2, 20], "class": [2, 4, 5, 6, 7, 8, 9, 10, 11, 12, 20], "arg": [2, 4, 5, 6], "ani": [2, 4, 5, 6, 15, 20], "kwarg": [2, 4, 5, 6], "base": [2, 4, 5, 6, 7, 8, 9, 10, 11, 12, 20], "combin": [2, 11], "huber": 2, "pinbal": 2, "quantil": [2, 4, 8], "regress": 2, "target": [2, 6, 8, 12, 13], "mask": [2, 12], "comput": [2, 12], "paramet": [2, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 20], "torch": [2, 4, 5, 6, 11, 12, 13], "tensor": [2, 4, 5, 6, 7, 10, 12, 13], "np": [2, 7, 13], "ndarrai": [2, 13], "valu": [2, 7, 9, 12, 13, 20], "appli": [2, 4, 8, 12], "mean": [2, 7, 8], "logcosh": 2, "delta": 2, "1": [2, 4, 6, 10, 11, 17], "0": [2, 7, 11, 17], "object": [2, 6, 7, 8, 9, 10, 11, 12, 13], "cosh": 2, "factori": [2, 6, 11], "static": 2, "config": [2, 6, 9, 12], "creat": [2, 4, 6, 9, 12, 13, 15], "nn": [2, 6, 13], "squar": [2, 8], "error": [2, 8], "x_vector": 2, "check": [2, 12, 13, 15], "x": [2, 7], "numpi": [2, 8], "arrai": [2, 7, 8, 13], "input": [2, 4, 5, 20], "vector": [2, 4], "bool": [2, 7, 9, 11, 12], "true": [2, 9, 11, 12], "fals": [2, 7], "otherwis": 2, "convert": [2, 10], "If": [2, 15, 18, 20], "detach": 2, "graph": 2, "move": [2, 12], "cpu": 2, "devic": [2, 9, 12], "trace": 2, "output_dim": 2, "dure": [2, 20], "valid": [2, 7, 9, 10, 11, 12, 20], "train_loss": [2, 11, 12], "calcul": [2, 8, 12], "each": [2, 7, 12], "batch": [2, 7, 12, 20], "add": [2, 4, 12, 15], "validation_loss": 2, "train_load": [2, 12], "val_load": [2, 12], "averag": [2, 12], "epoch": [2, 7, 11, 12, 20], "data": [2, 8, 9, 10, 12, 13, 20], "dataload": [2, 12], "loader": [2, 9, 12], "reset": [2, 5], "temporari": 2, "additivedecod": [3, 4], "attent": [3, 4, 7, 8, 20], "basedecod": [3, 4], "initialize_weight": [3, 4], "multiheaddecod": [3, 4], "additiveencod": [3, 5], "baseencod": [3, 5], "reset_hidden_st": [3, 5], "multiheadencod": [3, 5], "seq2seqfactori": [3, 6], "create_additive_model": [3, 6], "create_multihead_model": [3, 6], "print_weight": [3, 6], "seq2seq": [3, 6, 12], "addit": [4, 5, 6, 7], "dencod": 4, "x_tensor": [4, 5], "hidden_st": 4, "cell_stat": 4, "encoder_output": 4, "pass": [4, 5, 6, 12, 15], "implement": [4, 5, 6, 11, 17, 20], "follow": [4, 6, 10, 12, 20], "get": [4, 6, 9, 10, 11, 17, 20], "score": [4, 7, 8, 12], "context": [4, 20], "concaten": [4, 6], "through": [4, 12, 15, 18, 20], "lstm": [4, 5, 20], "layer": [4, 6, 20], "output": [4, 5, 6, 12, 20], "fc": 4, "leaki": 4, "relu": 4, "dropout": [4, 20], "2": [4, 6, 10], "3": [4, 6, 7, 10, 11, 15], "hidden": [4, 5, 12, 20], "state": [4, 5, 9, 12], "cell": [4, 5], "tupl": 4, "hidden_out": 4, "cell_out": 4, "attention_scor": 4, "transform": [4, 8], "same": 4, "size": [4, 7, 20], "tanh": 4, "activ": 4, "sum": 4, "scalar": 4, "softmax": 4, "shape": 4, "batch_siz": [4, 6], "hidden_s": 4, "seq_length": [4, 6], "subclass": [4, 5], "initi": [4, 9, 12, 20], "weight": [4, 6, 8, 12, 20], "multihead": [4, 5, 6, 20], "input_s": [4, 6], "num_lay": 4, "attention_output_weights_probs_decod": 4, "length": [5, 6, 7, 8, 9, 10, 12, 13], "sequenc": [5, 6, 7, 8, 9, 11, 12, 20], "self": 5, "count": [6, 12], "number": [6, 8, 11, 12, 20], "trainabl": [6, 12], "num_param": 6, "int": [6, 7, 8, 9, 11, 12], "an": [6, 13, 15, 20], "dict": [6, 7, 12], "dictionari": [6, 7, 12], "contain": [6, 7, 8, 9, 12, 20], "configur": [6, 17], "print": [6, 12], "time": 6, "seri": 6, "forecast": 6, "sourc": [6, 17], "source_length": 6, "teacher_forcing_ratio": [6, 11], "start_posit": 6, "iter": 6, "over": 6, "specif": [6, 20], "window": 6, "4": [6, 10, 11], "exogen": [6, 8], "variabl": [6, 12], "5": [6, 10, 11, 15], "store": [6, 12], "output_s": 6, "float": [6, 8, 9, 11, 12], "teacher": [6, 11, 12, 20], "forc": [6, 11, 12, 20], "ratio": [6, 10, 11, 20], "start": [6, 17], "posit": 6, "num_quantil": 6, "matrix": 7, "head": [7, 20], "sensit": [7, 8], "analysi": [7, 8, 20], "arcana_procedur": [7, 8, 9, 20], "sample_numb": [7, 8], "attention_prob": 7, "arch_point": 7, "overal": [7, 12], "perform": [7, 20], "system": [7, 15], "probabl": 7, "architectur": [7, 17], "pointer": 7, "batch_idx": 7, "_type_": 7, "_description_": 7, "future_step": 7, "available_sequ": 7, "log_scal": 7, "futur": 7, "save_path": [7, 13], "path": [7, 9, 13, 20], "save": [7, 8, 9, 12, 13], "useoffset": 7, "usemathtext": 7, "uselocal": 7, "scalarformatt": 7, "format": [7, 20], "colorbar": 7, "label": [7, 8], "scientif": 7, "notat": 7, "inherit": 7, "matplotlib": 7, "ticker": 7, "learn": [7, 11, 12, 20], "rate": [7, 11, 12, 20], "learning_rate_dict": [7, 12], "plot_path": 7, "original_sequ": 7, "mean_predict": 7, "loss_typ": [7, 20], "scores_predict": 7, "upper_predict": 7, "lower_predict": 7, "ylabel": 7, "origin": [7, 8, 15, 16], "avail": [7, 8, 9, 10, 11, 12, 20], "uncertainti": [7, 20], "whether": [7, 9, 15], "random_index": 7, "random": 7, "index": [7, 17], "upper": 7, "lower": 7, "list": [7, 9, 10, 11, 12, 13, 15], "y": 7, "axi": 7, "train_loss_mod": 7, "dimens": [7, 12, 20], "gener": [7, 9, 11, 17], "ar": [7, 9, 15, 20], "describ": 7, "_gener": 7, "multipurpos": 7, "ax": 7, "x_valu": 7, "y_valu": 7, "color": 7, "legend_nam": 7, "line": 7, "_subplot": 7, "axessubplot": 7, "legend": 7, "scatter": 7, "x_label": 7, "y_label": 7, "test_data": [8, 13], "correct": 8, "metric": [8, 20], "sampl": [8, 13, 20], "helper": [8, 13], "num_steps_to_predict": 8, "len_available_label": 8, "also": [8, 9, 20], "scale": [8, 10, 13], "target_label": 8, "predict_label": 8, "mse_scor": 8, "rmse_scor": 8, "root": 8, "mape_scor": 8, "absolut": 8, "percentag": 8, "mae_scor": 8, "which": [9, 11, 12, 20], "us": [9, 10, 11, 13, 15, 20, 21], "read": 9, "dataclass": 9, "handler": 9, "general_paramet": 9, "ini": [9, 20], "trial": [9, 12, 20], "attribut": [9, 20], "optuna": [9, 12, 20], "test": [9, 10, 13, 15, 20], "pretrain": [9, 10], "model_fold": [9, 13], "folder": [9, 13], "fix_sequency_length": 9, "main": [9, 10, 12, 20], "It": [9, 10, 11, 20], "some": 9, "necessari": [9, 20], "finetun": [9, 10, 20], "all": [9, 15, 20], "split": [9, 10, 20], "element": 9, "done": [9, 15], "librari": 9, "renam": 9, "accord": [9, 20], "prune": 9, "delet": 9, "studi": 9, "run": [9, 15, 18, 20], "first": [9, 14, 16], "optim": [9, 11, 12, 20], "bad": 9, "includ": [10, 15, 20], "standard": [10, 13], "pad": [10, 13], "them": [10, 12, 15], "6": [10, 15], "general_config": [10, 20], "data_config": 10, "procedure_config": [10, 20], "maximum": [10, 20], "cycl": [10, 20], "val": [10, 12], "panda": 10, "datafram": [10, 13], "padded_train": 10, "padded_v": 10, "padded_test": 10, "padded_data": 10, "data_length": 10, "schedul": [11, 12, 20], "model_config": 11, "len_train_load": 11, "given": [11, 13, 15], "rais": 11, "valueerror": 11, "unknown": 11, "earli": [11, 12, 20], "stop": [11, 12, 20], "criterion_rul": 11, "pq": 11, "training_strip": 11, "10": 11, "alpha": 11, "patienc": [11, 20], "val_loss": [11, 12], "three": 11, "criteria": [11, 20], "gl": 11, "pqup": 11, "increas": 11, "progress": 11, "quotient": 11, "met": 11, "num_epoch": 11, "epoch_divis": 11, "seq_start": 11, "seq_end": 11, "start_learning_ratio": 11, "end_learning_ratio": 11, "005": 11, "decay_strid": 11, "linear": 11, "decai": [11, 20], "initial_teacher_forcing_ratio": 11, "exp": 11, "decay_paramet": 11, "bound": 11, "between": 11, "higher": 11, "begin": [11, 20], "gradual": 11, "decreas": 11, "available_seq": [11, 12], "script": 12, "criterion": 12, "process_typ": 12, "temp_losses_individu": 12, "endogen": 12, "out": 12, "zero": 12, "appropri": 12, "dim_weight": 12, "later": 12, "should": [12, 13, 15], "current": 12, "should_stop": 12, "differ": [12, 20], "directori": [12, 13, 20], "result": [12, 13], "one": [12, 13], "loop": 12, "gradient": 12, "backpropag": 12, "updat": [12, 15, 16], "val_length": 12, "control": [12, 20], "doe": 12, "last": 12, "after": 12, "everi": [12, 15], "50": 12, "turn": 12, "off": [12, 16], "packag": [13, 16, 17, 19, 20], "all_predict": 13, "all_target_data_list": 13, "align": 13, "truncat": 13, "truncated_all_predict": 13, "truncated_all_target": 13, "present": [13, 20], "locat": [13, 20], "where": [13, 20], "obj": 13, "handl": 13, "arr": 13, "target_length": 13, "nan": 13, "structur": [13, 20], "id": 13, "trial_path": 13, "plot_typ": 13, "figur": 13, "test_length": 13, "pd": 13, "scaled_data": 13, "scaler": [13, 20], "sklearn": 13, "preprocess": [13, 20], "minmaxscal": 13, "gmail": 14, "yet": [14, 15], "why": 14, "welcom": 15, "thei": 15, "greatli": 15, "appreci": 15, "littl": 15, "bit": 15, "help": [15, 20], "credit": [15, 17], "alwai": [15, 18], "you": [15, 18, 20], "can": [15, 18, 20], "mani": 15, "wai": 15, "basf": [15, 18, 20], "arcana": [15, 16, 18, 21], "issu": 15, "pleas": [15, 20], "your": [15, 18, 20], "oper": [15, 20], "version": 15, "detail": 15, "about": 15, "local": 15, "setup": [15, 18], "might": 15, "troubleshoot": 15, "reproduc": 15, "look": 15, "anyth": 15, "tag": 15, "want": 15, "open": 15, "whoever": 15, "enhanc": [15, 20], "could": 15, "more": 15, "part": [15, 20], "offici": [15, 16], "doc": [15, 20], "docstr": 15, "even": 15, "web": 15, "blog": 15, "post": 15, "articl": 15, "propos": 15, "explain": [15, 20], "how": [15, 20], "would": 15, "work": 15, "keep": 15, "scope": 15, "narrow": 15, "possibl": [15, 20], "make": 15, "easier": 15, "rememb": 15, "volunt": 15, "driven": 15, "readi": 15, "here": [15, 20], "": [15, 20], "develop": [15, 17, 20], "fork": 15, "repo": [15, 18], "clone": [15, 18], "git": [15, 18], "your_name_her": 15, "instal": [15, 17], "virtualenv": 15, "assum": 15, "have": [15, 18, 20], "virtualenvwrapp": 15, "mkvirtualenv": 15, "cd": 15, "python": [15, 18, 20], "py": [15, 18], "branch": [15, 16], "checkout": 15, "b": [15, 20], "bugfix": 15, "now": 15, "chang": 15, "when": 15, "re": 15, "flake8": 15, "other": [15, 20], "tox": 15, "NO": 15, "pytest": 15, "To": [15, 18, 20, 21], "just": 15, "pip": [15, 18, 20], "commit": 15, "push": 15, "m": [15, 20], "descript": [15, 20], "websit": 15, "befor": [15, 20], "meet": 15, "put": 15, "new": 15, "readm": 15, "rst": [15, 20], "7": 15, "8": 15, "pypi": 15, "A": [15, 20], "remind": 15, "maintain": 15, "sure": 15, "entri": 15, "histori": [15, 17], "Then": 15, "bump2vers": 15, "patch": 15, "major": 15, "minor": 15, "travi": 15, "releas": [16, 17], "document": 16, "ad": 16, "abstract": 16, "modular": [16, 20], "introduct": 17, "featur": 17, "quick": 17, "citat": 17, "stabl": 17, "usag": 17, "subpackag": [17, 19], "modul": [17, 19, 20], "contribut": 17, "report": 17, "bug": 17, "fix": 17, "write": 17, "submit": 17, "feedback": 17, "pull": 17, "request": 17, "guidelin": 17, "deploi": 17, "lead": [17, 20], "contributor": 17, "2023": [17, 20], "02": 17, "01": 17, "08": [17, 20], "25": 17, "12": [17, 20], "search": 17, "page": 17, "command": [18, 20], "termin": [18, 20], "prefer": 18, "method": [18, 20], "most": 18, "recent": 18, "don": 18, "t": 18, "guid": [18, 20], "download": [18, 20], "either": 18, "public": 18, "repositori": 18, "Or": 18, "tarbal": 18, "curl": 18, "ojl": 18, "master": 18, "onc": 18, "content": 19, "ttention": 20, "r": 20, "e": 20, "c": 20, "urrent": 20, "ognit": 20, "lgorithm": 20, "n": 20, "eural": 20, "nalysi": 20, "logo": 20, "conceptu": 20, "design": 20, "midjournei": 20, "www": 20, "seq": 20, "integr": 20, "mechan": 20, "stage": 20, "lifecycl": 20, "monitor": 20, "batteri": 20, "degrad": 20, "provid": 20, "robust": 20, "multi": 20, "task": 20, "capabl": 20, "its": 20, "abil": 20, "dynam": 20, "adjust": 20, "wide": 20, "rang": 20, "histor": 20, "foundat": 20, "insight": 20, "detect": 20, "incorpor": 20, "predefin": 20, "discharg": 20, "offer": 20, "dual": 20, "analyt": 20, "approach": 20, "coupl": 20, "inher": 20, "essenti": 20, "framework": 20, "strateg": 20, "mainten": 20, "protocol": 20, "well": 20, "reliabl": 20, "longev": 20, "energi": 20, "storag": 20, "arcanadoc": 20, "io": 20, "For": 20, "instruct": 20, "refer": 20, "within": 20, "achiev": 20, "naiv": 20, "enabl": 20, "dataset": 20, "hyperparamet": 20, "specifi": 20, "transfer": 20, "proce": 20, "fine": 20, "pre": 20, "strategi": 20, "g": 20, "final": 20, "flag": 20, "code": 20, "snippet": 20, "import": [20, 21], "arcana_debug": 20, "def": 20, "run_test": 20, "tl_strategi": 20, "__name__": 20, "__main__": 20, "ensur": 20, "requir": 20, "depend": 20, "per": 20, "flexibl": 20, "adapt": 20, "scenario": 20, "health": 20, "tailor": 20, "need": 20, "two": 20, "general_set": 20, "model_paramet": 20, "match": 20, "characterist": 20, "intend": 20, "serv": 20, "central": 20, "hub": 20, "aspect": 20, "workflow": 20, "manag": 20, "kei": 20, "section": 20, "respect": 20, "captur": 20, "uniqu": 20, "identifi": 20, "allow": 20, "header": 20, "consid": 20, "addition": 20, "toggl": 20, "variou": 20, "disabl": 20, "behavior": 20, "suit": 20, "natur": 20, "extent": 20, "below": 20, "outlin": 20, "chosen": 20, "These": 20, "crucial": 20, "converg": 20, "factor": 20, "reduct": 20, "cyclic": 20, "proper": 20, "better": 20, "faster": 20, "like": 20, "bidirection": 20, "directli": 20, "influenc": 20, "capac": 20, "complex": 20, "tempor": 20, "both": 20, "focu": 20, "understand": 20, "prevent": 20, "overfit": 20, "determin": 20, "long": 20, "continu": 20, "without": 20, "improv": 20, "stabil": 20, "speed": 20, "end": 20, "transit": 20, "autonom": 20, "tuning_config": 20, "facilit": 20, "systemat": 20, "explor": 20, "space": 20, "techniqu": 20, "discret": 20, "categor": 20, "choic": 20, "diagram": 20, "simplifi": 20, "uml": 20, "delin": 20, "research": 20, "paper": 20, "find": 20, "theoret": 20, "background": 20, "full": 20, "f": 20, "lee": 20, "linzner": 20, "d": 20, "michel": 20, "k": 20, "merker": 20, "l": 20, "berk": 20, "nuss": 20, "stein": 20, "h": 20, "toward": 20, "chemistri": 20, "agnost": 20, "lifetim": 20, "chemrxiv": 20, "access": 20}, "objects": {"": [[0, 0, 0, "-", "arcana"]], "arcana": [[1, 0, 0, "-", "logger"], [2, 0, 0, "-", "losses"], [3, 0, 0, "-", "models"], [7, 0, 0, "-", "plots"], [8, 0, 0, "-", "prediction"], [9, 0, 0, "-", "procedures"], [10, 0, 0, "-", "processing"], [11, 0, 0, "-", "regularizations"], [12, 0, 0, "-", "training"], [13, 0, 0, "-", "utils"]], "arcana.logger": [[1, 0, 0, "-", "logger"]], "arcana.logger.logger": [[1, 1, 1, "", "get_logger"], [1, 1, 1, "", "setup_applevel_logger"]], "arcana.losses": [[2, 0, 0, "-", "loss"], [2, 0, 0, "-", "loss_trace"]], "arcana.losses.loss": [[2, 2, 1, "", "CombinedHPLoss"], [2, 2, 1, "", "CombinedLPLoss"], [2, 2, 1, "", "HuberLoss"], [2, 2, 1, "", "LogCoshLoss"], [2, 2, 1, "", "LossFactory"], [2, 2, 1, "", "MSELoss"], [2, 2, 1, "", "PinballLoss"], [2, 2, 1, "", "QuantileLoss"], [2, 1, 1, "", "is_numpy"], [2, 1, 1, "", "is_tensor"], [2, 1, 1, "", "to_numpy"], [2, 1, 1, "", "to_tensor"]], "arcana.losses.loss.CombinedHPLoss": [[2, 3, 1, "", "forward"]], "arcana.losses.loss.CombinedLPLoss": [[2, 3, 1, "", "forward"]], "arcana.losses.loss.LogCoshLoss": [[2, 3, 1, "", "forward"]], "arcana.losses.loss.LossFactory": [[2, 3, 1, "", "create_loss"]], "arcana.losses.loss.PinballLoss": [[2, 3, 1, "", "forward"], [2, 3, 1, "", "pinball_loss_numpy"]], "arcana.losses.loss.QuantileLoss": [[2, 3, 1, "", "forward"]], "arcana.losses.loss_trace": [[2, 2, 1, "", "LossTrace"]], "arcana.losses.loss_trace.LossTrace": [[2, 3, 1, "", "calculate_batch_loss_train"], [2, 3, 1, "", "calculate_batch_loss_validation"], [2, 3, 1, "", "calculate_epoch_loss"], [2, 3, 1, "", "reset_temp_loss_trace"]], "arcana.models": [[4, 0, 0, "-", "decoders"], [5, 0, 0, "-", "encoders"], [6, 0, 0, "-", "sequence_to_sequence"]], "arcana.models.decoders": [[4, 0, 0, "-", "additive_decoder"], [4, 0, 0, "-", "base_decoder"], [4, 0, 0, "-", "multihead_decoder"]], "arcana.models.decoders.additive_decoder": [[4, 2, 1, "", "AdditiveDecoder"], [4, 2, 1, "", "Attention"]], "arcana.models.decoders.additive_decoder.AdditiveDecoder": [[4, 3, 1, "", "forward"]], "arcana.models.decoders.additive_decoder.Attention": [[4, 3, 1, "", "forward"]], "arcana.models.decoders.base_decoder": [[4, 2, 1, "", "BaseDecoder"], [4, 1, 1, "", "initialize_weights"]], "arcana.models.decoders.base_decoder.BaseDecoder": [[4, 3, 1, "", "forward"]], "arcana.models.decoders.multihead_decoder": [[4, 2, 1, "", "MultiheadDecoder"]], "arcana.models.decoders.multihead_decoder.MultiheadDecoder": [[4, 3, 1, "", "forward"]], "arcana.models.encoders": [[5, 0, 0, "-", "additive_encoder"], [5, 0, 0, "-", "base_encoder"], [5, 0, 0, "-", "multihead_encoder"]], "arcana.models.encoders.additive_encoder": [[5, 2, 1, "", "AdditiveEncoder"]], "arcana.models.encoders.additive_encoder.AdditiveEncoder": [[5, 3, 1, "", "forward"]], "arcana.models.encoders.base_encoder": [[5, 2, 1, "", "BaseEncoder"]], "arcana.models.encoders.base_encoder.BaseEncoder": [[5, 3, 1, "", "forward"], [5, 3, 1, "", "reset_hidden_state"]], "arcana.models.encoders.multihead_encoder": [[5, 2, 1, "", "MultiheadEncoder"]], "arcana.models.encoders.multihead_encoder.MultiheadEncoder": [[5, 3, 1, "", "forward"]], "arcana.models.sequence_to_sequence": [[6, 0, 0, "-", "seq2seq_factory"], [6, 0, 0, "-", "sequence_to_sequence"]], "arcana.models.sequence_to_sequence.seq2seq_factory": [[6, 2, 1, "", "Seq2SeqFactory"]], "arcana.models.sequence_to_sequence.seq2seq_factory.Seq2SeqFactory": [[6, 3, 1, "", "count_parameters"], [6, 3, 1, "", "create_additive_model"], [6, 3, 1, "", "create_multihead_model"], [6, 3, 1, "", "print_weights"]], "arcana.models.sequence_to_sequence.sequence_to_sequence": [[6, 2, 1, "", "Seq2Seq"]], "arcana.models.sequence_to_sequence.sequence_to_sequence.Seq2Seq": [[6, 3, 1, "", "forward"]], "arcana.plots": [[7, 0, 0, "-", "analysis_plot_utils"], [7, 0, 0, "-", "plot_utils"], [7, 0, 0, "-", "plots"]], "arcana.plots.analysis_plot_utils": [[7, 2, 1, "", "AnalysisPlotUtils"], [7, 2, 1, "", "ScalarFormatterForceFormat"]], "arcana.plots.analysis_plot_utils.AnalysisPlotUtils": [[7, 3, 1, "", "plot_additive_attention"], [7, 3, 1, "", "plot_all_multihead_attention"], [7, 3, 1, "", "plot_sensitivity_analyis"]], "arcana.plots.plot_utils": [[7, 1, 1, "", "plot_model_learning_rate"], [7, 1, 1, "", "plot_sample_prediction"], [7, 1, 1, "", "plot_train_val_loss"], [7, 1, 1, "", "plot_train_val_loss_individual"]], "arcana.plots.plots": [[7, 2, 1, "", "Plots"]], "arcana.plots.plots.Plots": [[7, 3, 1, "", "plot_line"], [7, 3, 1, "", "plot_scatter"], [7, 3, 1, "", "set_labels"]], "arcana.prediction": [[8, 0, 0, "-", "quantile_prediction"]], "arcana.prediction.quantile_prediction": [[8, 2, 1, "", "QuantilePredictor"], [8, 1, 1, "", "metrics_helper"]], "arcana.prediction.quantile_prediction.QuantilePredictor": [[8, 3, 1, "", "apply_correct_exogenous"], [8, 3, 1, "", "calculate_metrics"], [8, 3, 1, "", "metrics_preparation"], [8, 3, 1, "", "plot_analysis"], [8, 3, 1, "", "plot_predictions"], [8, 3, 1, "", "predict_data_preparation"], [8, 3, 1, "", "predict_quantiles"], [8, 3, 1, "", "save_attention"], [8, 3, 1, "", "save_metrics"], [8, 3, 1, "", "save_predictions"], [8, 3, 1, "", "save_sensitivity"], [8, 3, 1, "", "save_transformed_predictions"], [8, 3, 1, "", "transform_predictions_to_numpy"]], "arcana.procedures": [[9, 0, 0, "-", "config_handler"], [9, 0, 0, "-", "predicting"], [9, 0, 0, "-", "training"], [9, 0, 0, "-", "tuning"]], "arcana.procedures.config_handler": [[9, 2, 1, "", "ConfigHandler"], [9, 2, 1, "", "DataConfig"], [9, 2, 1, "", "GeneralConfig"], [9, 2, 1, "", "ModelConfig"], [9, 2, 1, "", "ProcedureConfig"]], "arcana.procedures.config_handler.ConfigHandler": [[9, 3, 1, "", "get_data_config"], [9, 3, 1, "", "get_general_config"], [9, 3, 1, "", "get_model_config"], [9, 3, 1, "", "get_procedure_config"]], "arcana.procedures.config_handler.DataConfig": [[9, 4, 1, "", "data_headers"], [9, 4, 1, "", "maximum_available_cycles"], [9, 4, 1, "", "number_of_samples"], [9, 4, 1, "", "path_to_config"], [9, 4, 1, "", "test_sample"], [9, 4, 1, "", "train_ratio"], [9, 4, 1, "", "val_test_ratio"]], "arcana.procedures.config_handler.GeneralConfig": [[9, 4, 1, "", "data_name"], [9, 4, 1, "", "input_data_folder"], [9, 4, 1, "", "path_to_config"], [9, 4, 1, "", "pretrained_model"], [9, 4, 1, "", "scaler_model"], [9, 4, 1, "", "test_id"]], "arcana.procedures.config_handler.ModelConfig": [[9, 3, 1, "", "read_tuning_conf"]], "arcana.procedures.config_handler.ProcedureConfig": [[9, 4, 1, "", "attention_type"], [9, 4, 1, "", "learning_rate_type"], [9, 4, 1, "", "naive_training"], [9, 4, 1, "", "number_of_trials"], [9, 4, 1, "", "optuna_tuning"], [9, 4, 1, "", "path_to_config"], [9, 4, 1, "", "predicting"], [9, 4, 1, "", "preprocess_data"], [9, 4, 1, "", "transfer_learning"]], "arcana.procedures.predicting": [[9, 2, 1, "", "PredictProcedure"]], "arcana.procedures.predicting.PredictProcedure": [[9, 3, 1, "", "all_preparation"], [9, 3, 1, "", "get_pretrained_model"], [9, 3, 1, "", "get_test_data"], [9, 3, 1, "", "predicting"], [9, 3, 1, "", "predicting_all"], [9, 3, 1, "", "preparation"]], "arcana.procedures.training": [[9, 2, 1, "", "TrainProcedure"]], "arcana.procedures.training.TrainProcedure": [[9, 3, 1, "", "data_splits"], [9, 3, 1, "", "loader_initialization"], [9, 3, 1, "", "model_parameter_initialization"], [9, 3, 1, "", "save_data_splits"], [9, 3, 1, "", "save_model_parameters"], [9, 3, 1, "", "set_device"], [9, 3, 1, "", "train_element_initialization"], [9, 3, 1, "", "training"]], "arcana.procedures.tuning": [[9, 2, 1, "", "TuneProcedure"]], "arcana.procedures.tuning.TuneProcedure": [[9, 3, 1, "", "rename_trials"], [9, 3, 1, "", "save_tuning_params"], [9, 3, 1, "", "tuning"]], "arcana.processing": [[10, 0, 0, "-", "data_processing"]], "arcana.processing.data_processing": [[10, 2, 1, "", "DataPreparation"]], "arcana.processing.data_processing.DataPreparation": [[10, 3, 1, "", "data_splits"], [10, 3, 1, "", "get_data_for_model"], [10, 3, 1, "", "get_max_available_scaled_cycle"], [10, 3, 1, "", "pad_the_splits"], [10, 3, 1, "", "prepare_data_for_model"], [10, 3, 1, "", "prepare_test_data_for_pretrained_model"], [10, 3, 1, "", "standardize_data"], [10, 3, 1, "", "tensorized_and_pad"]], "arcana.regularizations": [[11, 0, 0, "-", "optimizer_scheduler"], [11, 0, 0, "-", "stopping_criteria"], [11, 0, 0, "-", "teacher_forcing"]], "arcana.regularizations.optimizer_scheduler": [[11, 2, 1, "", "SchedulerFactory"]], "arcana.regularizations.optimizer_scheduler.SchedulerFactory": [[11, 3, 1, "", "get_scheduler"]], "arcana.regularizations.stopping_criteria": [[11, 2, 1, "", "EarlyStopping"]], "arcana.regularizations.stopping_criteria.EarlyStopping": [[11, 3, 1, "", "step"]], "arcana.regularizations.teacher_forcing": [[11, 2, 1, "", "TeacherForcingScheduler"]], "arcana.regularizations.teacher_forcing.TeacherForcingScheduler": [[11, 3, 1, "", "get_ratio"]], "arcana.training": [[12, 0, 0, "-", "train_model"]], "arcana.training.train_model": [[12, 2, 1, "", "Seq2SeqTrainer"]], "arcana.training.train_model.Seq2SeqTrainer": [[12, 3, 1, "", "calculate_overall_combined_loss"], [12, 3, 1, "", "calculate_overall_loss"], [12, 3, 1, "", "compute_loss"], [12, 3, 1, "", "count_parameters"], [12, 3, 1, "", "early_stopping_check"], [12, 3, 1, "", "initialize_training"], [12, 3, 1, "", "plot_training_params"], [12, 3, 1, "", "save_training_results_and_plots"], [12, 3, 1, "", "train_epoch"], [12, 3, 1, "", "train_model"], [12, 3, 1, "", "update_training_params"], [12, 3, 1, "", "validation_epoch"]], "arcana.utils": [[13, 0, 0, "-", "utils"]], "arcana.utils.utils": [[13, 1, 1, "", "align_and_truncate_samples"], [13, 1, 1, "", "create_dir"], [13, 1, 1, "", "handle_tensor"], [13, 1, 1, "", "pad_array_to_length"], [13, 1, 1, "", "prepare_folder_structure"], [13, 1, 1, "", "prepare_optuna_folder_structure"], [13, 1, 1, "", "save_optuna_fig"], [13, 1, 1, "", "save_plots"], [13, 1, 1, "", "save_test_data"], [13, 1, 1, "", "standardize_dataset"]]}, "objtypes": {"0": "py:module", "1": "py:function", "2": "py:class", "3": "py:method", "4": "py:attribute"}, "objnames": {"0": ["py", "module", "Python module"], "1": ["py", "function", "Python function"], "2": ["py", "class", "Python class"], "3": ["py", "method", "Python method"], "4": ["py", "attribute", "Python attribute"]}, "titleterms": {"arcana": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 17, 19, 20], "packag": 0, "subpackag": [0, 3], "modul": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13], "content": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 17], "logger": 1, "submodul": [1, 2, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13], "loss": 2, "loss_trac": 2, "model": [3, 4, 5, 6, 20], "decod": 4, "additive_decod": 4, "base_decod": 4, "multihead_decod": 4, "encod": 5, "additive_encod": 5, "base_encod": 5, "multihead_encod": 5, "sequence_to_sequ": 6, "seq2seq_factori": 6, "plot": 7, "analysis_plot_util": 7, "plot_util": 7, "predict": [8, 9], "quantile_predict": 8, "procedur": 9, "config_handl": 9, "train": [9, 12], "tune": [9, 20], "process": 10, "data_process": 10, "regular": 11, "optimizer_schedul": 11, "stopping_criteria": 11, "teacher_forc": 11, "train_model": 12, "util": 13, "credit": 14, "develop": 14, "lead": 14, "contributor": 14, "contribut": 15, "type": 15, "report": 15, "bug": 15, "fix": 15, "implement": 15, "featur": [15, 20], "write": 15, "document": [15, 17, 20], "submit": 15, "feedback": 15, "get": 15, "start": [15, 20], "pull": 15, "request": 15, "guidelin": 15, "deploi": 15, "histori": 16, "0": 16, "1": 16, "2023": 16, "02": 16, "01": 16, "08": 16, "25": 16, "12": 16, "welcom": 17, "": 17, "indic": 17, "tabl": 17, "instal": [18, 20], "stabl": 18, "releas": 18, "from": 18, "sourc": 18, "introduct": 20, "quick": 20, "configur": 20, "gener": 20, "architectur": 20, "citat": 20, "usag": 21}, "envversion": {"sphinx.domains.c": 3, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 9, "sphinx.domains.index": 1, "sphinx.domains.javascript": 3, "sphinx.domains.math": 2, "sphinx.domains.python": 4, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "sphinx": 58}, "alltitles": {"Arcana package": [[0, "arcana-package"]], "Subpackages": [[0, "subpackages"], [3, "subpackages"]], "Module contents": [[0, "module-arcana"], [1, "module-arcana.logger"], [2, "module-arcana.losses"], [3, "module-arcana.models"], [4, "module-arcana.models.decoders"], [5, "module-arcana.models.encoders"], [6, "module-arcana.models.sequence_to_sequence"], [7, "module-arcana.plots"], [8, "module-arcana.prediction"], [9, "module-arcana.procedures"], [10, "module-arcana.processing"], [11, "module-arcana.regularizations"], [12, "module-arcana.training"], [13, "module-arcana.utils"]], "Arcana Logger": [[1, "arcana-logger"]], "Submodules": [[1, "submodules"], [2, "submodules"], [4, "submodules"], [5, "submodules"], [6, "submodules"], [7, "submodules"], [8, "submodules"], [9, "submodules"], [10, "submodules"], [11, "submodules"], [12, "submodules"], [13, "submodules"]], "arcana.logger.logger module": [[1, "module-arcana.logger.logger"]], "Arcana Losses": [[2, "arcana-losses"]], "arcana.losses.loss module": [[2, "module-arcana.losses.loss"]], "arcana.losses.loss_trace module": [[2, "module-arcana.losses.loss_trace"]], "Arcana Models": [[3, "arcana-models"]], "Arcana Models: Decoders": [[4, "arcana-models-decoders"]], "arcana.models.decoders.additive_decoder module": [[4, "module-arcana.models.decoders.additive_decoder"]], "arcana.models.decoders.base_decoder module": [[4, "module-arcana.models.decoders.base_decoder"]], "arcana.models.decoders.multihead_decoder module": [[4, "module-arcana.models.decoders.multihead_decoder"]], "Arcana models: encoders": [[5, "arcana-models-encoders"]], "arcana.models.encoders.additive_encoder module": [[5, "module-arcana.models.encoders.additive_encoder"]], "arcana.models.encoders.base_encoder module": [[5, "module-arcana.models.encoders.base_encoder"]], "arcana.models.encoders.multihead_encoder module": [[5, "module-arcana.models.encoders.multihead_encoder"]], "Arcana Models: sequence_to_sequence": [[6, "arcana-models-sequence-to-sequence"]], "arcana.models.sequence_to_sequence.seq2seq_factory module": [[6, "module-arcana.models.sequence_to_sequence.seq2seq_factory"]], "arcana.models.sequence_to_sequence.sequence_to_sequence module": [[6, "module-arcana.models.sequence_to_sequence.sequence_to_sequence"]], "Arcana Plots": [[7, "arcana-plots"]], "arcana.plots.analysis_plot_utils module": [[7, "module-arcana.plots.analysis_plot_utils"]], "arcana.plots.plot_utils module": [[7, "module-arcana.plots.plot_utils"]], "arcana.plots.plots module": [[7, "module-arcana.plots.plots"]], "Arcana Prediction": [[8, "arcana-prediction"]], "arcana.prediction.quantile_prediction module": [[8, "module-arcana.prediction.quantile_prediction"]], "Arcana Procedures": [[9, "arcana-procedures"]], "arcana.procedures.config_handler module": [[9, "module-arcana.procedures.config_handler"]], "arcana.procedures.predicting module": [[9, "module-arcana.procedures.predicting"]], "arcana.procedures.training module": [[9, "module-arcana.procedures.training"]], "arcana.procedures.tuning module": [[9, "module-arcana.procedures.tuning"]], "Arcana Processing": [[10, "arcana-processing"]], "arcana.processing.data_processing module": [[10, "module-arcana.processing.data_processing"]], "Arcana Regularizations": [[11, "arcana-regularizations"]], "arcana.regularizations.optimizer_scheduler module": [[11, "module-arcana.regularizations.optimizer_scheduler"]], "arcana.regularizations.stopping_criteria module": [[11, "module-arcana.regularizations.stopping_criteria"]], "arcana.regularizations.teacher_forcing module": [[11, "module-arcana.regularizations.teacher_forcing"]], "Arcana Training": [[12, "arcana-training"]], "arcana.training.train_model module": [[12, "module-arcana.training.train_model"]], "Arcana Utils": [[13, "arcana-utils"]], "arcana.utils.utils module": [[13, "module-arcana.utils.utils"]], "Credits": [[14, "credits"]], "Development Lead": [[14, "development-lead"]], "Contributors": [[14, "contributors"]], "Contributing": [[15, "contributing"]], "Types of Contributions": [[15, "types-of-contributions"]], "Report Bugs": [[15, "report-bugs"]], "Fix Bugs": [[15, "fix-bugs"]], "Implement Features": [[15, "implement-features"]], "Write Documentation": [[15, "write-documentation"]], "Submit Feedback": [[15, "submit-feedback"]], "Get Started!": [[15, "get-started"]], "Pull Request Guidelines": [[15, "pull-request-guidelines"]], "Deploying": [[15, "deploying"]], "History": [[16, "history"]], "0.1.0 (2023-02-01)": [[16, "id1"]], "0.1.1 (2023-08-25)": [[16, "id2"]], "1.0.0 (2023-12-08)": [[16, "id3"]], "Welcome to Arcana\u2019s documentation!": [[17, "welcome-to-arcana-s-documentation"]], "Contents:": [[17, null]], "Indices and tables": [[17, "indices-and-tables"]], "Installation": [[18, "installation"], [20, "installation"]], "Stable release": [[18, "stable-release"]], "From sources": [[18, "from-sources"]], "arcana": [[19, "arcana"]], "ARCANA": [[20, "arcana"]], "Introduction": [[20, "introduction"]], "Features": [[20, "features"]], "Documentation": [[20, "documentation"]], "Quick Start": [[20, "quick-start"]], "Configuration": [[20, "configuration"]], "General Configuration": [[20, "general-configuration"]], "Model Configuration": [[20, "model-configuration"]], "Tuning Configuration": [[20, "tuning-configuration"]], "Architecture": [[20, "architecture"]], "Citation": [[20, "citation"]], "Usage": [[21, "usage"]]}, "indexentries": {"arcana": [[0, "module-arcana"]], "module": [[0, "module-arcana"], [1, "module-arcana.logger"], [1, "module-arcana.logger.logger"], [2, "module-arcana.losses"], [2, "module-arcana.losses.loss"], [2, "module-arcana.losses.loss_trace"], [3, "module-arcana.models"], [4, "module-arcana.models.decoders"], [4, "module-arcana.models.decoders.additive_decoder"], [4, "module-arcana.models.decoders.base_decoder"], [4, "module-arcana.models.decoders.multihead_decoder"], [5, "module-arcana.models.encoders"], [5, "module-arcana.models.encoders.additive_encoder"], [5, "module-arcana.models.encoders.base_encoder"], [5, "module-arcana.models.encoders.multihead_encoder"], [6, "module-arcana.models.sequence_to_sequence"], [6, "module-arcana.models.sequence_to_sequence.seq2seq_factory"], [6, "module-arcana.models.sequence_to_sequence.sequence_to_sequence"], [7, "module-arcana.plots"], [7, "module-arcana.plots.analysis_plot_utils"], [7, "module-arcana.plots.plot_utils"], [7, "module-arcana.plots.plots"], [8, "module-arcana.prediction"], [8, "module-arcana.prediction.quantile_prediction"], [9, "module-arcana.procedures"], [9, "module-arcana.procedures.config_handler"], [9, "module-arcana.procedures.predicting"], [9, "module-arcana.procedures.training"], [9, "module-arcana.procedures.tuning"], [10, "module-arcana.processing"], [10, "module-arcana.processing.data_processing"], [11, "module-arcana.regularizations"], [11, "module-arcana.regularizations.optimizer_scheduler"], [11, "module-arcana.regularizations.stopping_criteria"], [11, "module-arcana.regularizations.teacher_forcing"], [12, "module-arcana.training"], [12, "module-arcana.training.train_model"], [13, "module-arcana.utils"], [13, "module-arcana.utils.utils"]], "arcana.logger": [[1, "module-arcana.logger"]], "arcana.logger.logger": [[1, "module-arcana.logger.logger"]], "get_logger() (in module arcana.logger.logger)": [[1, "arcana.logger.logger.get_logger"]], "setup_applevel_logger() (in module arcana.logger.logger)": [[1, "arcana.logger.logger.setup_applevel_logger"]], "combinedhploss (class in arcana.losses.loss)": [[2, "arcana.losses.loss.CombinedHPLoss"]], "combinedlploss (class in arcana.losses.loss)": [[2, "arcana.losses.loss.CombinedLPLoss"]], "huberloss (class in arcana.losses.loss)": [[2, "arcana.losses.loss.HuberLoss"]], "logcoshloss (class in arcana.losses.loss)": [[2, "arcana.losses.loss.LogCoshLoss"]], "lossfactory (class in arcana.losses.loss)": [[2, "arcana.losses.loss.LossFactory"]], "losstrace (class in arcana.losses.loss_trace)": [[2, "arcana.losses.loss_trace.LossTrace"]], "mseloss (class in arcana.losses.loss)": [[2, "arcana.losses.loss.MSELoss"]], "pinballloss (class in arcana.losses.loss)": [[2, "arcana.losses.loss.PinballLoss"]], "quantileloss (class in arcana.losses.loss)": [[2, "arcana.losses.loss.QuantileLoss"]], "arcana.losses": [[2, "module-arcana.losses"]], "arcana.losses.loss": [[2, "module-arcana.losses.loss"]], "arcana.losses.loss_trace": [[2, "module-arcana.losses.loss_trace"]], "calculate_batch_loss_train() (arcana.losses.loss_trace.losstrace method)": [[2, "arcana.losses.loss_trace.LossTrace.calculate_batch_loss_train"]], "calculate_batch_loss_validation() (arcana.losses.loss_trace.losstrace method)": [[2, "arcana.losses.loss_trace.LossTrace.calculate_batch_loss_validation"]], "calculate_epoch_loss() (arcana.losses.loss_trace.losstrace method)": [[2, "arcana.losses.loss_trace.LossTrace.calculate_epoch_loss"]], "create_loss() (arcana.losses.loss.lossfactory static method)": [[2, "arcana.losses.loss.LossFactory.create_loss"]], "forward() (arcana.losses.loss.combinedhploss method)": [[2, "arcana.losses.loss.CombinedHPLoss.forward"]], "forward() (arcana.losses.loss.combinedlploss method)": [[2, "arcana.losses.loss.CombinedLPLoss.forward"]], "forward() (arcana.losses.loss.logcoshloss method)": [[2, "arcana.losses.loss.LogCoshLoss.forward"]], "forward() (arcana.losses.loss.pinballloss method)": [[2, "arcana.losses.loss.PinballLoss.forward"]], "forward() (arcana.losses.loss.quantileloss method)": [[2, "arcana.losses.loss.QuantileLoss.forward"]], "is_numpy() (in module arcana.losses.loss)": [[2, "arcana.losses.loss.is_numpy"]], "is_tensor() (in module arcana.losses.loss)": [[2, "arcana.losses.loss.is_tensor"]], "pinball_loss_numpy() (arcana.losses.loss.pinballloss method)": [[2, "arcana.losses.loss.PinballLoss.pinball_loss_numpy"]], "reset_temp_loss_trace() (arcana.losses.loss_trace.losstrace method)": [[2, "arcana.losses.loss_trace.LossTrace.reset_temp_loss_trace"]], "to_numpy() (in module arcana.losses.loss)": [[2, "arcana.losses.loss.to_numpy"]], "to_tensor() (in module arcana.losses.loss)": [[2, "arcana.losses.loss.to_tensor"]], "arcana.models": [[3, "module-arcana.models"]], "additivedecoder (class in arcana.models.decoders.additive_decoder)": [[4, "arcana.models.decoders.additive_decoder.AdditiveDecoder"]], "attention (class in arcana.models.decoders.additive_decoder)": [[4, "arcana.models.decoders.additive_decoder.Attention"]], "basedecoder (class in arcana.models.decoders.base_decoder)": [[4, "arcana.models.decoders.base_decoder.BaseDecoder"]], "multiheaddecoder (class in arcana.models.decoders.multihead_decoder)": [[4, "arcana.models.decoders.multihead_decoder.MultiheadDecoder"]], "arcana.models.decoders": [[4, "module-arcana.models.decoders"]], "arcana.models.decoders.additive_decoder": [[4, "module-arcana.models.decoders.additive_decoder"]], "arcana.models.decoders.base_decoder": [[4, "module-arcana.models.decoders.base_decoder"]], "arcana.models.decoders.multihead_decoder": [[4, "module-arcana.models.decoders.multihead_decoder"]], "forward() (arcana.models.decoders.additive_decoder.additivedecoder method)": [[4, "arcana.models.decoders.additive_decoder.AdditiveDecoder.forward"]], "forward() (arcana.models.decoders.additive_decoder.attention method)": [[4, "arcana.models.decoders.additive_decoder.Attention.forward"]], "forward() (arcana.models.decoders.base_decoder.basedecoder method)": [[4, "arcana.models.decoders.base_decoder.BaseDecoder.forward"]], "forward() (arcana.models.decoders.multihead_decoder.multiheaddecoder method)": [[4, "arcana.models.decoders.multihead_decoder.MultiheadDecoder.forward"]], "initialize_weights() (in module arcana.models.decoders.base_decoder)": [[4, "arcana.models.decoders.base_decoder.initialize_weights"]], "additiveencoder (class in arcana.models.encoders.additive_encoder)": [[5, "arcana.models.encoders.additive_encoder.AdditiveEncoder"]], "baseencoder (class in arcana.models.encoders.base_encoder)": [[5, "arcana.models.encoders.base_encoder.BaseEncoder"]], "multiheadencoder (class in arcana.models.encoders.multihead_encoder)": [[5, "arcana.models.encoders.multihead_encoder.MultiheadEncoder"]], "arcana.models.encoders": [[5, "module-arcana.models.encoders"]], "arcana.models.encoders.additive_encoder": [[5, "module-arcana.models.encoders.additive_encoder"]], "arcana.models.encoders.base_encoder": [[5, "module-arcana.models.encoders.base_encoder"]], "arcana.models.encoders.multihead_encoder": [[5, "module-arcana.models.encoders.multihead_encoder"]], "forward() (arcana.models.encoders.additive_encoder.additiveencoder method)": [[5, "arcana.models.encoders.additive_encoder.AdditiveEncoder.forward"]], "forward() (arcana.models.encoders.base_encoder.baseencoder method)": [[5, "arcana.models.encoders.base_encoder.BaseEncoder.forward"]], "forward() (arcana.models.encoders.multihead_encoder.multiheadencoder method)": [[5, "arcana.models.encoders.multihead_encoder.MultiheadEncoder.forward"]], "reset_hidden_state() (arcana.models.encoders.base_encoder.baseencoder method)": [[5, "arcana.models.encoders.base_encoder.BaseEncoder.reset_hidden_state"]], "seq2seq (class in arcana.models.sequence_to_sequence.sequence_to_sequence)": [[6, "arcana.models.sequence_to_sequence.sequence_to_sequence.Seq2Seq"]], "seq2seqfactory (class in arcana.models.sequence_to_sequence.seq2seq_factory)": [[6, "arcana.models.sequence_to_sequence.seq2seq_factory.Seq2SeqFactory"]], "arcana.models.sequence_to_sequence": [[6, "module-arcana.models.sequence_to_sequence"]], "arcana.models.sequence_to_sequence.seq2seq_factory": [[6, "module-arcana.models.sequence_to_sequence.seq2seq_factory"]], "arcana.models.sequence_to_sequence.sequence_to_sequence": [[6, "module-arcana.models.sequence_to_sequence.sequence_to_sequence"]], "count_parameters() (arcana.models.sequence_to_sequence.seq2seq_factory.seq2seqfactory method)": [[6, "arcana.models.sequence_to_sequence.seq2seq_factory.Seq2SeqFactory.count_parameters"]], "create_additive_model() (arcana.models.sequence_to_sequence.seq2seq_factory.seq2seqfactory method)": [[6, "arcana.models.sequence_to_sequence.seq2seq_factory.Seq2SeqFactory.create_additive_model"]], "create_multihead_model() (arcana.models.sequence_to_sequence.seq2seq_factory.seq2seqfactory method)": [[6, "arcana.models.sequence_to_sequence.seq2seq_factory.Seq2SeqFactory.create_multihead_model"]], "forward() (arcana.models.sequence_to_sequence.sequence_to_sequence.seq2seq method)": [[6, "arcana.models.sequence_to_sequence.sequence_to_sequence.Seq2Seq.forward"]], "print_weights() (arcana.models.sequence_to_sequence.seq2seq_factory.seq2seqfactory method)": [[6, "arcana.models.sequence_to_sequence.seq2seq_factory.Seq2SeqFactory.print_weights"]], "analysisplotutils (class in arcana.plots.analysis_plot_utils)": [[7, "arcana.plots.analysis_plot_utils.AnalysisPlotUtils"]], "plots (class in arcana.plots.plots)": [[7, "arcana.plots.plots.Plots"]], "scalarformatterforceformat (class in arcana.plots.analysis_plot_utils)": [[7, "arcana.plots.analysis_plot_utils.ScalarFormatterForceFormat"]], "arcana.plots": [[7, "module-arcana.plots"]], "arcana.plots.analysis_plot_utils": [[7, "module-arcana.plots.analysis_plot_utils"]], "arcana.plots.plot_utils": [[7, "module-arcana.plots.plot_utils"]], "arcana.plots.plots": [[7, "module-arcana.plots.plots"]], "plot_additive_attention() (arcana.plots.analysis_plot_utils.analysisplotutils method)": [[7, "arcana.plots.analysis_plot_utils.AnalysisPlotUtils.plot_additive_attention"]], "plot_all_multihead_attention() (arcana.plots.analysis_plot_utils.analysisplotutils method)": [[7, "arcana.plots.analysis_plot_utils.AnalysisPlotUtils.plot_all_multihead_attention"]], "plot_line() (arcana.plots.plots.plots method)": [[7, "arcana.plots.plots.Plots.plot_line"]], "plot_model_learning_rate() (in module arcana.plots.plot_utils)": [[7, "arcana.plots.plot_utils.plot_model_learning_rate"]], "plot_sample_prediction() (in module arcana.plots.plot_utils)": [[7, "arcana.plots.plot_utils.plot_sample_prediction"]], "plot_scatter() (arcana.plots.plots.plots method)": [[7, "arcana.plots.plots.Plots.plot_scatter"]], "plot_sensitivity_analyis() (arcana.plots.analysis_plot_utils.analysisplotutils method)": [[7, "arcana.plots.analysis_plot_utils.AnalysisPlotUtils.plot_sensitivity_analyis"]], "plot_train_val_loss() (in module arcana.plots.plot_utils)": [[7, "arcana.plots.plot_utils.plot_train_val_loss"]], "plot_train_val_loss_individual() (in module arcana.plots.plot_utils)": [[7, "arcana.plots.plot_utils.plot_train_val_loss_individual"]], "set_labels() (arcana.plots.plots.plots method)": [[7, "arcana.plots.plots.Plots.set_labels"]], "quantilepredictor (class in arcana.prediction.quantile_prediction)": [[8, "arcana.prediction.quantile_prediction.QuantilePredictor"]], "apply_correct_exogenous() (arcana.prediction.quantile_prediction.quantilepredictor method)": [[8, "arcana.prediction.quantile_prediction.QuantilePredictor.apply_correct_exogenous"]], "arcana.prediction": [[8, "module-arcana.prediction"]], "arcana.prediction.quantile_prediction": [[8, "module-arcana.prediction.quantile_prediction"]], "calculate_metrics() (arcana.prediction.quantile_prediction.quantilepredictor method)": [[8, "arcana.prediction.quantile_prediction.QuantilePredictor.calculate_metrics"]], "metrics_helper() (in module arcana.prediction.quantile_prediction)": [[8, "arcana.prediction.quantile_prediction.metrics_helper"]], "metrics_preparation() (arcana.prediction.quantile_prediction.quantilepredictor method)": [[8, "arcana.prediction.quantile_prediction.QuantilePredictor.metrics_preparation"]], "plot_analysis() (arcana.prediction.quantile_prediction.quantilepredictor method)": [[8, "arcana.prediction.quantile_prediction.QuantilePredictor.plot_analysis"]], "plot_predictions() (arcana.prediction.quantile_prediction.quantilepredictor method)": [[8, "arcana.prediction.quantile_prediction.QuantilePredictor.plot_predictions"]], "predict_data_preparation() (arcana.prediction.quantile_prediction.quantilepredictor method)": [[8, "arcana.prediction.quantile_prediction.QuantilePredictor.predict_data_preparation"]], "predict_quantiles() (arcana.prediction.quantile_prediction.quantilepredictor method)": [[8, "arcana.prediction.quantile_prediction.QuantilePredictor.predict_quantiles"]], "save_attention() (arcana.prediction.quantile_prediction.quantilepredictor method)": [[8, "arcana.prediction.quantile_prediction.QuantilePredictor.save_attention"]], "save_metrics() (arcana.prediction.quantile_prediction.quantilepredictor method)": [[8, "arcana.prediction.quantile_prediction.QuantilePredictor.save_metrics"]], "save_predictions() (arcana.prediction.quantile_prediction.quantilepredictor method)": [[8, "arcana.prediction.quantile_prediction.QuantilePredictor.save_predictions"]], "save_sensitivity() (arcana.prediction.quantile_prediction.quantilepredictor method)": [[8, "arcana.prediction.quantile_prediction.QuantilePredictor.save_sensitivity"]], "save_transformed_predictions() (arcana.prediction.quantile_prediction.quantilepredictor method)": [[8, "arcana.prediction.quantile_prediction.QuantilePredictor.save_transformed_predictions"]], "transform_predictions_to_numpy() (arcana.prediction.quantile_prediction.quantilepredictor method)": [[8, "arcana.prediction.quantile_prediction.QuantilePredictor.transform_predictions_to_numpy"]], "confighandler (class in arcana.procedures.config_handler)": [[9, "arcana.procedures.config_handler.ConfigHandler"]], "dataconfig (class in arcana.procedures.config_handler)": [[9, "arcana.procedures.config_handler.DataConfig"]], "generalconfig (class in arcana.procedures.config_handler)": [[9, "arcana.procedures.config_handler.GeneralConfig"]], "modelconfig (class in arcana.procedures.config_handler)": [[9, "arcana.procedures.config_handler.ModelConfig"]], "predictprocedure (class in arcana.procedures.predicting)": [[9, "arcana.procedures.predicting.PredictProcedure"]], "procedureconfig (class in arcana.procedures.config_handler)": [[9, "arcana.procedures.config_handler.ProcedureConfig"]], "trainprocedure (class in arcana.procedures.training)": [[9, "arcana.procedures.training.TrainProcedure"]], "tuneprocedure (class in arcana.procedures.tuning)": [[9, "arcana.procedures.tuning.TuneProcedure"]], "all_preparation() (arcana.procedures.predicting.predictprocedure method)": [[9, "arcana.procedures.predicting.PredictProcedure.all_preparation"]], "arcana.procedures": [[9, "module-arcana.procedures"]], "arcana.procedures.config_handler": [[9, "module-arcana.procedures.config_handler"]], "arcana.procedures.predicting": [[9, "module-arcana.procedures.predicting"]], "arcana.procedures.training": [[9, "module-arcana.procedures.training"]], "arcana.procedures.tuning": [[9, "module-arcana.procedures.tuning"]], "attention_type (arcana.procedures.config_handler.procedureconfig attribute)": [[9, "arcana.procedures.config_handler.ProcedureConfig.attention_type"]], "data_headers (arcana.procedures.config_handler.dataconfig attribute)": [[9, "arcana.procedures.config_handler.DataConfig.data_headers"]], "data_name (arcana.procedures.config_handler.generalconfig attribute)": [[9, "arcana.procedures.config_handler.GeneralConfig.data_name"]], "data_splits() (arcana.procedures.training.trainprocedure method)": [[9, "arcana.procedures.training.TrainProcedure.data_splits"]], "get_data_config() (arcana.procedures.config_handler.confighandler method)": [[9, "arcana.procedures.config_handler.ConfigHandler.get_data_config"]], "get_general_config() (arcana.procedures.config_handler.confighandler method)": [[9, "arcana.procedures.config_handler.ConfigHandler.get_general_config"]], "get_model_config() (arcana.procedures.config_handler.confighandler method)": [[9, "arcana.procedures.config_handler.ConfigHandler.get_model_config"]], "get_pretrained_model() (arcana.procedures.predicting.predictprocedure method)": [[9, "arcana.procedures.predicting.PredictProcedure.get_pretrained_model"]], "get_procedure_config() (arcana.procedures.config_handler.confighandler method)": [[9, "arcana.procedures.config_handler.ConfigHandler.get_procedure_config"]], "get_test_data() (arcana.procedures.predicting.predictprocedure method)": [[9, "arcana.procedures.predicting.PredictProcedure.get_test_data"]], "input_data_folder (arcana.procedures.config_handler.generalconfig attribute)": [[9, "arcana.procedures.config_handler.GeneralConfig.input_data_folder"]], "learning_rate_type (arcana.procedures.config_handler.procedureconfig attribute)": [[9, "arcana.procedures.config_handler.ProcedureConfig.learning_rate_type"]], "loader_initialization() (arcana.procedures.training.trainprocedure method)": [[9, "arcana.procedures.training.TrainProcedure.loader_initialization"]], "maximum_available_cycles (arcana.procedures.config_handler.dataconfig attribute)": [[9, "arcana.procedures.config_handler.DataConfig.maximum_available_cycles"]], "model_parameter_initialization() (arcana.procedures.training.trainprocedure method)": [[9, "arcana.procedures.training.TrainProcedure.model_parameter_initialization"]], "naive_training (arcana.procedures.config_handler.procedureconfig attribute)": [[9, "arcana.procedures.config_handler.ProcedureConfig.naive_training"]], "number_of_samples (arcana.procedures.config_handler.dataconfig attribute)": [[9, "arcana.procedures.config_handler.DataConfig.number_of_samples"]], "number_of_trials (arcana.procedures.config_handler.procedureconfig attribute)": [[9, "arcana.procedures.config_handler.ProcedureConfig.number_of_trials"]], "optuna_tuning (arcana.procedures.config_handler.procedureconfig attribute)": [[9, "arcana.procedures.config_handler.ProcedureConfig.optuna_tuning"]], "path_to_config (arcana.procedures.config_handler.dataconfig attribute)": [[9, "arcana.procedures.config_handler.DataConfig.path_to_config"]], "path_to_config (arcana.procedures.config_handler.generalconfig attribute)": [[9, "arcana.procedures.config_handler.GeneralConfig.path_to_config"]], "path_to_config (arcana.procedures.config_handler.procedureconfig attribute)": [[9, "arcana.procedures.config_handler.ProcedureConfig.path_to_config"]], "predicting (arcana.procedures.config_handler.procedureconfig attribute)": [[9, "arcana.procedures.config_handler.ProcedureConfig.predicting"]], "predicting() (arcana.procedures.predicting.predictprocedure method)": [[9, "arcana.procedures.predicting.PredictProcedure.predicting"]], "predicting_all() (arcana.procedures.predicting.predictprocedure method)": [[9, "arcana.procedures.predicting.PredictProcedure.predicting_all"]], "preparation() (arcana.procedures.predicting.predictprocedure method)": [[9, "arcana.procedures.predicting.PredictProcedure.preparation"]], "preprocess_data (arcana.procedures.config_handler.procedureconfig attribute)": [[9, "arcana.procedures.config_handler.ProcedureConfig.preprocess_data"]], "pretrained_model (arcana.procedures.config_handler.generalconfig attribute)": [[9, "arcana.procedures.config_handler.GeneralConfig.pretrained_model"]], "read_tuning_conf() (arcana.procedures.config_handler.modelconfig method)": [[9, "arcana.procedures.config_handler.ModelConfig.read_tuning_conf"]], "rename_trials() (arcana.procedures.tuning.tuneprocedure method)": [[9, "arcana.procedures.tuning.TuneProcedure.rename_trials"]], "save_data_splits() (arcana.procedures.training.trainprocedure method)": [[9, "arcana.procedures.training.TrainProcedure.save_data_splits"]], "save_model_parameters() (arcana.procedures.training.trainprocedure method)": [[9, "arcana.procedures.training.TrainProcedure.save_model_parameters"]], "save_tuning_params() (arcana.procedures.tuning.tuneprocedure method)": [[9, "arcana.procedures.tuning.TuneProcedure.save_tuning_params"]], "scaler_model (arcana.procedures.config_handler.generalconfig attribute)": [[9, "arcana.procedures.config_handler.GeneralConfig.scaler_model"]], "set_device() (arcana.procedures.training.trainprocedure method)": [[9, "arcana.procedures.training.TrainProcedure.set_device"]], "test_id (arcana.procedures.config_handler.generalconfig attribute)": [[9, "arcana.procedures.config_handler.GeneralConfig.test_id"]], "test_sample (arcana.procedures.config_handler.dataconfig attribute)": [[9, "arcana.procedures.config_handler.DataConfig.test_sample"]], "train_element_initialization() (arcana.procedures.training.trainprocedure method)": [[9, "arcana.procedures.training.TrainProcedure.train_element_initialization"]], "train_ratio (arcana.procedures.config_handler.dataconfig attribute)": [[9, "arcana.procedures.config_handler.DataConfig.train_ratio"]], "training() (arcana.procedures.training.trainprocedure method)": [[9, "arcana.procedures.training.TrainProcedure.training"]], "transfer_learning (arcana.procedures.config_handler.procedureconfig attribute)": [[9, "arcana.procedures.config_handler.ProcedureConfig.transfer_learning"]], "tuning() (arcana.procedures.tuning.tuneprocedure method)": [[9, "arcana.procedures.tuning.TuneProcedure.tuning"]], "val_test_ratio (arcana.procedures.config_handler.dataconfig attribute)": [[9, "arcana.procedures.config_handler.DataConfig.val_test_ratio"]], "datapreparation (class in arcana.processing.data_processing)": [[10, "arcana.processing.data_processing.DataPreparation"]], "arcana.processing": [[10, "module-arcana.processing"]], "arcana.processing.data_processing": [[10, "module-arcana.processing.data_processing"]], "data_splits() (arcana.processing.data_processing.datapreparation method)": [[10, "arcana.processing.data_processing.DataPreparation.data_splits"]], "get_data_for_model() (arcana.processing.data_processing.datapreparation method)": [[10, "arcana.processing.data_processing.DataPreparation.get_data_for_model"]], "get_max_available_scaled_cycle() (arcana.processing.data_processing.datapreparation method)": [[10, "arcana.processing.data_processing.DataPreparation.get_max_available_scaled_cycle"]], "pad_the_splits() (arcana.processing.data_processing.datapreparation method)": [[10, "arcana.processing.data_processing.DataPreparation.pad_the_splits"]], "prepare_data_for_model() (arcana.processing.data_processing.datapreparation method)": [[10, "arcana.processing.data_processing.DataPreparation.prepare_data_for_model"]], "prepare_test_data_for_pretrained_model() (arcana.processing.data_processing.datapreparation method)": [[10, "arcana.processing.data_processing.DataPreparation.prepare_test_data_for_pretrained_model"]], "standardize_data() (arcana.processing.data_processing.datapreparation method)": [[10, "arcana.processing.data_processing.DataPreparation.standardize_data"]], "tensorized_and_pad() (arcana.processing.data_processing.datapreparation method)": [[10, "arcana.processing.data_processing.DataPreparation.tensorized_and_pad"]], "earlystopping (class in arcana.regularizations.stopping_criteria)": [[11, "arcana.regularizations.stopping_criteria.EarlyStopping"]], "schedulerfactory (class in arcana.regularizations.optimizer_scheduler)": [[11, "arcana.regularizations.optimizer_scheduler.SchedulerFactory"]], "teacherforcingscheduler (class in arcana.regularizations.teacher_forcing)": [[11, "arcana.regularizations.teacher_forcing.TeacherForcingScheduler"]], "arcana.regularizations": [[11, "module-arcana.regularizations"]], "arcana.regularizations.optimizer_scheduler": [[11, "module-arcana.regularizations.optimizer_scheduler"]], "arcana.regularizations.stopping_criteria": [[11, "module-arcana.regularizations.stopping_criteria"]], "arcana.regularizations.teacher_forcing": [[11, "module-arcana.regularizations.teacher_forcing"]], "get_ratio() (arcana.regularizations.teacher_forcing.teacherforcingscheduler method)": [[11, "arcana.regularizations.teacher_forcing.TeacherForcingScheduler.get_ratio"]], "get_scheduler() (arcana.regularizations.optimizer_scheduler.schedulerfactory method)": [[11, "arcana.regularizations.optimizer_scheduler.SchedulerFactory.get_scheduler"]], "step() (arcana.regularizations.stopping_criteria.earlystopping method)": [[11, "arcana.regularizations.stopping_criteria.EarlyStopping.step"]], "seq2seqtrainer (class in arcana.training.train_model)": [[12, "arcana.training.train_model.Seq2SeqTrainer"]], "arcana.training": [[12, "module-arcana.training"]], "arcana.training.train_model": [[12, "module-arcana.training.train_model"]], "calculate_overall_combined_loss() (arcana.training.train_model.seq2seqtrainer method)": [[12, "arcana.training.train_model.Seq2SeqTrainer.calculate_overall_combined_loss"]], "calculate_overall_loss() (arcana.training.train_model.seq2seqtrainer method)": [[12, "arcana.training.train_model.Seq2SeqTrainer.calculate_overall_loss"]], "compute_loss() (arcana.training.train_model.seq2seqtrainer method)": [[12, "arcana.training.train_model.Seq2SeqTrainer.compute_loss"]], "count_parameters() (arcana.training.train_model.seq2seqtrainer method)": [[12, "arcana.training.train_model.Seq2SeqTrainer.count_parameters"]], "early_stopping_check() (arcana.training.train_model.seq2seqtrainer method)": [[12, "arcana.training.train_model.Seq2SeqTrainer.early_stopping_check"]], "initialize_training() (arcana.training.train_model.seq2seqtrainer method)": [[12, "arcana.training.train_model.Seq2SeqTrainer.initialize_training"]], "plot_training_params() (arcana.training.train_model.seq2seqtrainer method)": [[12, "arcana.training.train_model.Seq2SeqTrainer.plot_training_params"]], "save_training_results_and_plots() (arcana.training.train_model.seq2seqtrainer method)": [[12, "arcana.training.train_model.Seq2SeqTrainer.save_training_results_and_plots"]], "train_epoch() (arcana.training.train_model.seq2seqtrainer method)": [[12, "arcana.training.train_model.Seq2SeqTrainer.train_epoch"]], "train_model() (arcana.training.train_model.seq2seqtrainer method)": [[12, "arcana.training.train_model.Seq2SeqTrainer.train_model"]], "update_training_params() (arcana.training.train_model.seq2seqtrainer method)": [[12, "arcana.training.train_model.Seq2SeqTrainer.update_training_params"]], "validation_epoch() (arcana.training.train_model.seq2seqtrainer method)": [[12, "arcana.training.train_model.Seq2SeqTrainer.validation_epoch"]], "align_and_truncate_samples() (in module arcana.utils.utils)": [[13, "arcana.utils.utils.align_and_truncate_samples"]], "arcana.utils": [[13, "module-arcana.utils"]], "arcana.utils.utils": [[13, "module-arcana.utils.utils"]], "create_dir() (in module arcana.utils.utils)": [[13, "arcana.utils.utils.create_dir"]], "handle_tensor() (in module arcana.utils.utils)": [[13, "arcana.utils.utils.handle_tensor"]], "pad_array_to_length() (in module arcana.utils.utils)": [[13, "arcana.utils.utils.pad_array_to_length"]], "prepare_folder_structure() (in module arcana.utils.utils)": [[13, "arcana.utils.utils.prepare_folder_structure"]], "prepare_optuna_folder_structure() (in module arcana.utils.utils)": [[13, "arcana.utils.utils.prepare_optuna_folder_structure"]], "save_optuna_fig() (in module arcana.utils.utils)": [[13, "arcana.utils.utils.save_optuna_fig"]], "save_plots() (in module arcana.utils.utils)": [[13, "arcana.utils.utils.save_plots"]], "save_test_data() (in module arcana.utils.utils)": [[13, "arcana.utils.utils.save_test_data"]], "standardize_dataset() (in module arcana.utils.utils)": [[13, "arcana.utils.utils.standardize_dataset"]]}}) \ No newline at end of file diff --git a/usage.html b/usage.html index 94797cf..1ad08f7 100644 --- a/usage.html +++ b/usage.html @@ -37,7 +37,7 @@ Arcana
      - 0.1 + 1.0.0