-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathQuantumSimulator.cpp
345 lines (293 loc) · 8.76 KB
/
QuantumSimulator.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
/* Quantum Minigolf, a computer game illustrating quantum mechanics
Copyright (C) 2007 Friedemann Reinhard <[email protected]>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include "QuantumSimulator.h"
#include "quantumminigolf.h"
#define INTENS 120 // color intensity at maximal probability density
// constructor: setup the FFT engine and compute the Momentum Propagator
QuantumSimulator::QuantumSimulator (int width, int height, float dt)
{
this->dt = dt;
this->width = width;
this->height = height;
psi =
(fftwf_complex *) fftwf_malloc (sizeof (fftwf_complex) * width * height);
prop =
(fftwf_complex *) fftwf_malloc (sizeof (fftwf_complex) * width * height);
xprop =
(fftwf_complex *) fftwf_malloc (sizeof (fftwf_complex) * width * height);
printf ("Initializing FFT engine ... ");
fft = fftwf_plan_dft_2d (width, height,
psi, psi, FFTW_FORWARD, FFTW_MEASURE);
printf ("done\n");
printf ("Initializing inverse FFT engine ... ");
ifft = fftwf_plan_dft_2d (width, height,
psi, psi, FFTW_BACKWARD, FFTW_MEASURE);
BuildMomentumPropagator ();
// construct a dummy position propagator. The right propagator
// is constructed from the track, once the user has made its choice
// where to play.
for (int x = 0; x < width; x++)
{
for (int y = 0; y < height; y++)
{
xprop[x * height + y][0] = 0;
xprop[x * height + y][1] = 0;
}
}
printf ("done\n\n");
for (int i = 0; i < width; i++)
for (int j = 0; j < height; j++)
psi[i * height + j][0] = psi[i * height + j][1] = 0;
GaussNorm = 0;
}
QuantumSimulator::~QuantumSimulator (void)
{
fftwf_free (psi);
fftwf_free (prop);
fftwf_free (xprop);
}
void
QuantumSimulator::BuildMomentumPropagator ()
{
int x, y;
float yscale = width / height * width / height; // scale factor to compensate for different
// k_0 in x and y direction due to different dimensions
for (x = 0; x < width / 2; x++)
{
for (y = 0; y < height / 2; y++)
{
prop[x * height + y][0] = cos (dt * (-x * x - yscale * y * y));
prop[x * height + y][1] = sin (dt * (-x * x - yscale * y * y));
}
for (y = height / 2; y < height; y++)
{
prop[x * height + y][0] =
cos (dt * (-x * x - yscale * (y - height) * (y - height)));
prop[x * height + y][1] =
sin (dt * (-x * x - yscale * (y - height) * (y - height)));
}
}
for (x = width / 2; x < width; x++)
{
for (y = 0; y < height / 2; y++)
{
prop[x * height + y][0] =
cos (dt * (-(x - width) * (x - width) - yscale * y * y));
prop[x * height + y][1] =
sin (dt * (-(x - width) * (x - width) - yscale * y * y));
}
for (y = height / 2; y < height; y++)
{
prop[x * height + y][0] =
cos (dt *
(-(x - width) * (x - width) -
yscale * (y - height) * (y - height)));
prop[x * height + y][1] =
sin (dt *
(-(x - width) * (x - width) -
yscale * (y - height) * (y - height)));
}
}
}
// BuildPositionPropagator - build up the position from a bitmap
// with color-coded obstacle height
void
QuantumSimulator::BuildPositionPropagator (SDL_Surface * V)
{
int x, y;
Uint32 *V_dat = (Uint32 *) V->pixels;
// extract the potential
for (x = 0; x < width; x++)
{
for (y = 0; y < height; y++)
{
Uint8 dummy, red;
SDL_GetRGB (V_dat[x + y * width], V->format, &red, &dummy, &dummy);
xprop[x * height + y][0] =
cos (-.5 * (float) (red) * dt * 30000 / 255);
xprop[x * height + y][1] =
sin (-.5 * (float) (red) * dt * 30000 / 255);
if (red > 250)
{
xprop[x * height + y][0] = 0;
xprop[x * height + y][1] = 0;
}
}
}
}
//PropagateMomentum -- FFT into k-space and apply the momentum propagator
// to the wave function
// effectively, this propagates the wavefunction by dt in a zero potential
void
QuantumSimulator::PropagateMomentum (void)
{
volatile float tre, tim, pre, pim; // swap register and propagator real and imaginary parts
volatile int x, y;
// propagate in momentum space
fftwf_execute (fft);
for (x = 0; x < width; x++)
{
for (y = 0; y < height; y++)
{
tre = psi[x * height + y][0];
tim = psi[x * height + y][1];
pre = prop[x * height + y][0];
pim = prop[x * height + y][1];
psi[x * height + y][0] = tre * pre - tim * pim;
psi[x * height + y][1] = tre * pim + tim * pre;
}
}
fftwf_execute (ifft);
}
//PropagatePosition -- propagate in position space
// and scale the wavefunction by a factor of quench
// note that this operation is not unitary due to the
// hard erase at infinite potentials
// return value: the new norm of the propagated wavefunction
float
QuantumSimulator::PropagatePosition (float quench)
{
float norm = 0;
volatile float tre, tim, pre, pim, dnorm, mnorm = 0;
volatile int x, y;
for (x = 0; x < width; x++)
{
for (y = 0; y < height; y++)
{
tre = psi[x * height + y][0];
tim = psi[x * height + y][1];
pre = xprop[x * height + y][0];
pim = xprop[x * height + y][1];
if (pre == 0 && pim == 0)
{
psi[x * height + y][0] = 0;
psi[x * height + y][1] = 0;
}
else
{
//propagate the wavefunction.
// and correct for last time's shrink and the
// FFT's scaling
psi[x * height + y][0] = quench * (tre * pre - tim * pim);
psi[x * height + y][1] = quench * (tim * pre + tre * pim);
}
dnorm = (psi[x * height + y][0] * psi[x * height + y][0] +
psi[x * height + y][1] * psi[x * height + y][1]);
norm += dnorm;
}
}
norm /= GaussNorm * INTENS * INTENS;
return norm;
}
//PositionMeasurement
// performe a position measurement, i.e., randomly pick a point x, y
// according to the probability distribution defined by the wavefunction psi
void
QuantumSimulator::PositionMeasurement (int *x, int *y)
{
float norm = 0;
float psi2;
float cutoff = 1e-6;
float criterion;
float sucprob = 0;
int runs = 0;
int holex = 100, holey = 160;
int holer = 30;
for (int i = 0; i < width; i++)
{
for (int j = 0; j < height; j++)
{
float psi2 = psi[i * height + j][0] * psi[i * height + j][0] +
psi[i * height + j][1] * psi[i * height + j][1];
norm += psi2 * psi2;
}
}
for (int i = holex - holer; i < holex + holer; i++)
{
for (int j = holey - holer; j < holey + holer; j++)
{
float psi2 = psi[i * height + j][0] * psi[i * height + j][0] +
psi[i * height + j][1] * psi[i * height + j][1];
sucprob += psi2 * psi2;
}
}
sucprob /= norm;
do
{
*x = rand () % width;
*y = rand () % height;
psi2 = psi[*x * height + *y][0] * psi[*x * height + *y][0] +
psi[*x * height + *y][1] * psi[*x * height + *y][1];
criterion = ((float) (rand ()) / RAND_MAX) + cutoff;
runs++;
}
while (psi2 * psi2 / norm / 2 < criterion);
}
// GenGauss
// generate a coherent state (i.e. a Gaussian wavepacket centered around
// cx, cy in position and around kx, ky in momentum space)
void
QuantumSimulator::GenGauss (int cx, int cy, float kx, float ky, float w)
{
int x, y, xeff, yeff;
float r;
// commented out for uncertainty movie 070519
GaussNorm = 0;
int xlower = (int) (cx - 2.5 * w);
if (xlower < 0)
xlower = 0;
int ylower = (int) (cy - 2.5 * w);
if (ylower < 0)
ylower = 0;
int xupper = (int) (cx + 2.5 * w);
if (xupper > width)
xupper = width;
int yupper = (int) (cy + 2.5 * w);
if (yupper > height)
yupper = height;
for (x = xlower; x < xupper; x++)
{
xeff = x - cx;
for (y = ylower; y < yupper; y++)
{
yeff = y - cy;
r = exp (-.25 * (xeff * xeff + yeff * yeff) / w / w);
psi[height * x + y][0] = r * cos (kx * xeff + ky * yeff);
psi[height * x + y][1] = r * sin (kx * xeff + ky * yeff);
GaussNorm += psi[height * x + y][0] * psi[height * x + y][0] +
psi[height * x + y][1] * psi[height * x + y][1];
}
}
for (x = xlower; x < xupper; x++)
{
for (y = ylower; y < yupper; y++)
{
psi[height * x + y][0] *= INTENS;
psi[height * x + y][1] *= INTENS;
}
}
}
//ClearWave - initialize psi with zeros
void
QuantumSimulator::ClearWave (void)
{
for (int x = 0; x < width; x++)
{
for (int y = 0; y < height; y++)
{
psi[height * x + y][0] = psi[height * x + y][1] = 0;
}
}
}