-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtartanvo_node.py
149 lines (128 loc) · 5.89 KB
/
tartanvo_node.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
#!/usr/bin/env python
# Software License Agreement (BSD License)
#
# Copyright (c) 2020, Wenshan Wang, Yaoyu Hu, CMU
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions
# are met:
#
# * Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
# * Redistributions in binary form must reproduce the above
# copyright notice, this list of conditions and the following
# disclaimer in the documentation and/or other materials provided
# with the distribution.
# * Neither the name of CMU nor the names of its
# contributors may be used to endorse or promote products derived
# from this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
# FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
# COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
# INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
# BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
# LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
# LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
# ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
# POSSIBILITY OF SUCH DAMAGE.
import cv2
import numpy as np
import rospy
from sensor_msgs.msg import Image, CameraInfo
from geometry_msgs.msg import PoseStamped
from nav_msgs.msg import Odometry
from std_msgs.msg import Float32
from cv_bridge import CvBridge
from Datasets.utils import ToTensor, Compose, CropCenter, DownscaleFlow, make_intrinsics_layer
from Datasets.transformation import se2SE, SO2quat
from TartanVO import TartanVO
import time
class TartanVONode(object):
def __init__(self):
model_name = rospy.get_param('~model_name', 'tartanvo_1914.pkl')
w = rospy.get_param('~image_width', 640)
h = rospy.get_param('~image_height', 480)
fx = rospy.get_param('~focal_x', 320.0)
fy = rospy.get_param('~focal_y', 320.0)
ox = rospy.get_param('~center_x', 320.0)
oy = rospy.get_param('~center_y', 240.0)
self.cam_intrinsics = [w, h, fx, fy, ox, oy]
self.cv_bridge = CvBridge()
self.transform = Compose([CropCenter((448, 640)), DownscaleFlow(), ToTensor()])#, Normalize(mean=[0., 0., 0.],std=[1., 1., 1.])])
self.intrinsic = make_intrinsics_layer(w, h, fx, fy, ox, oy)
self.tartanvo = TartanVO(model_name)
self.pose_pub = rospy.Publisher("tartanvo_pose", PoseStamped, queue_size=10)
self.odom_pub = rospy.Publisher("tartanvo_odom", Odometry, queue_size=10)
rospy.Subscriber('rgb_image', Image, self.handle_img)
rospy.Subscriber('cam_info', CameraInfo, self.handle_caminfo)
rospy.Subscriber('vo_scale', Float32, self.handle_scale)
self.last_img = None
self.pose = np.matrix(np.eye(4,4))
self.scale = 1.0
def handle_caminfo(self, msg):
w = msg.width
h = msg.height
fx = msg.K[0]
fy = msg.K[4]
ox = msg.K[2]
oy = msg.K[5]
new_intrinsics = [w, h, fx, fy, ox, oy]
change = [xx!=yy for xx,yy in zip(new_intrinsics, self.cam_intrinsics)]
if True in change:
self.intrinsic = make_intrinsics_layer(w, h, fx, fy, ox, oy)
self.cam_intrinsics = [w, h, fx, fy, ox, oy]
print('Camera intrinsics updated..')
def handle_scale(self, msg):
self.scale = msg.data
def handle_img(self, msg):
starttime = time.time()
image_np = self.cv_bridge.imgmsg_to_cv2(msg, "bgr8")
if image_np.shape[0] != self.intrinsic.shape[0] or image_np.shape[1] != self.intrinsic.shape[1]:
print('The intrinsic parameter does not match the image parameter!')
return
if self.last_img is not None:
pose_msg = PoseStamped()
pose_msg.header.stamp = msg.header.stamp
pose_msg.header.frame_id = 'map'
sample = {'img1': self.last_img,
'img2': image_np,
'intrinsic': self.intrinsic
}
sample = self.transform(sample)
sample['img1'] = sample['img1'][None] # increase the dimension
sample['img2'] = sample['img2'][None]
sample['intrinsic'] = sample['intrinsic'][None]
motion, _ = self.tartanvo.test_batch(sample)
motion = motion[0]
# adjust the scale if available
if self.scale!=1:
trans = motion[:3]
trans = trans / np.linalg.norm(trans) * self.scale
motion[:3] = trans
print(self.scale)
motion_mat = se2SE(motion)
self.pose = self.pose * motion_mat
quat = SO2quat(self.pose[0:3,0:3])
pose_msg.pose.position.x = self.pose[0,3]
pose_msg.pose.position.y = self.pose[1,3]
pose_msg.pose.position.z = self.pose[2,3]
pose_msg.pose.orientation.x = quat[0]
pose_msg.pose.orientation.y = quat[1]
pose_msg.pose.orientation.z = quat[2]
pose_msg.pose.orientation.w = quat[3]
self.pose_pub.publish(pose_msg)
odom_msg = Odometry()
odom_msg.header = pose_msg.header
odom_msg.pose.pose = pose_msg.pose
self.odom_pub.publish(odom_msg)
self.last_img = image_np.copy()
print(" call back time: {}:".format(time.time()-starttime))
if __name__ == '__main__':
rospy.init_node("tartanvo_node", log_level=rospy.INFO)
node = TartanVONode()
rospy.spin()