forked from karanchahal/SaliencyMapper
-
Notifications
You must be signed in to change notification settings - Fork 0
/
model.py
143 lines (103 loc) · 5.25 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Variable
class PixelShuffleBlock(nn.Module):
def forward(self, x):
return F.pixel_shuffle(x, 2)
def CNNBlock(in_channels, out_channels,
kernel_size=3, layers=1, stride=1,
follow_with_bn=True, activation_fn=lambda: nn.ReLU(True), affine=True):
assert layers > 0 and kernel_size%2 and stride>0
current_channels = in_channels
_modules = []
for layer in range(layers):
_modules.append(nn.Conv2d(current_channels, out_channels, kernel_size, stride=stride if layer==0 else 1, padding=int(kernel_size/2), bias=not follow_with_bn))
current_channels = out_channels
if follow_with_bn:
_modules.append(nn.BatchNorm2d(current_channels, affine=affine))
if activation_fn is not None:
_modules.append(activation_fn())
return nn.Sequential(*_modules)
def SubpixelUpsampler(in_channels, out_channels, kernel_size=3, activation_fn=lambda: torch.nn.ReLU(inplace=False), follow_with_bn=True):
_modules = [
CNNBlock(in_channels, out_channels * 4, kernel_size=kernel_size, follow_with_bn=follow_with_bn),
PixelShuffleBlock(),
activation_fn(),
]
return nn.Sequential(*_modules)
class UpSampleBlock(nn.Module):
expansion = 1
def __init__(self, in_channels, out_channels,passthrough_channels, stride=1):
super(UpSampleBlock, self).__init__()
self.upsampler = SubpixelUpsampler(in_channels=in_channels,out_channels=out_channels)
self.follow_up = Block(out_channels+passthrough_channels,out_channels)
def forward(self, x, passthrough):
out = self.upsampler(x)
out = torch.cat((out,passthrough), 1)
return self.follow_up(out)
class Block(nn.Module):
expansion = 1
def __init__(self, in_planes, planes, stride=1):
super(Block, self).__init__()
self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=3, stride=stride, padding=1, bias=False)
self.bn1 = nn.BatchNorm2d(planes)
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=1, padding=1, bias=False)
self.bn2 = nn.BatchNorm2d(planes)
self.shortcut = nn.Sequential()
if stride != 1 or in_planes != self.expansion*planes:
self.shortcut = nn.Sequential(
nn.Conv2d(in_planes, self.expansion*planes, kernel_size=1, stride=stride, bias=False),
nn.BatchNorm2d(self.expansion*planes)
)
def forward(self, x):
out = F.relu(self.bn1(self.conv1(x)))
out = self.bn2(self.conv2(out))
out += self.shortcut(x)
out = F.relu(out)
return out
class SaliencyModel(nn.Module):
def __init__(self, block, num_blocks, num_classes=10):
super(SaliencyModel, self).__init__()
self.in_planes = 64
self.conv1 = nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1, bias=False)
self.bn1 = nn.BatchNorm2d(64)
self.layer1 = self._make_layer(block=block, planes=64, num_blocks=num_blocks[0], stride=1)
self.layer2 = self._make_layer(block=block, planes=128, num_blocks=num_blocks[1], stride=2)
self.layer3 = self._make_layer(block=block, planes=256, num_blocks=num_blocks[2], stride=2)
self.layer4 = self._make_layer(block=block, planes=512, num_blocks=num_blocks[3], stride=2)
self.uplayer4 = UpSampleBlock(in_channels=512,out_channels=256,passthrough_channels=256)
self.uplayer3 = UpSampleBlock(in_channels=256,out_channels=128,passthrough_channels=128)
self.uplayer2 = UpSampleBlock(in_channels=128,out_channels=64,passthrough_channels=64)
self.embedding = nn.Embedding(num_classes,512)
self.linear = nn.Linear(512*block.expansion, num_classes)
self.saliency_chans = nn.Conv2d(64,2,kernel_size=1,bias=False)
def _make_layer(self, block, planes, num_blocks, stride):
strides = [stride] + [1]*(num_blocks-1)
layers = []
for stride in strides:
layers.append(block(self.in_planes, planes, stride))
self.in_planes = planes * block.expansion
return nn.Sequential(*layers)
def forward(self, x,labels):
out = F.relu(self.bn1(self.conv1(x)))
scale1 = self.layer1(out)
scale2 = self.layer2(scale1)
scale3 = self.layer3(scale2)
scale4 = self.layer4(scale3)
em = torch.squeeze(self.embedding(labels.view(-1, 1)), 1)
act = torch.sum(scale4*em.view(-1, 512, 1, 1), 1, keepdim=True)
th = torch.sigmoid(act)
scale4 = scale4*th
upsample3 = self.uplayer4(scale4,scale3)
upsample2 = self.uplayer3(upsample3,scale2)
upsample1 = self.uplayer2(upsample2,scale1)
saliency_chans = self.saliency_chans(upsample1)
out = F.avg_pool2d(scale4, 4)
out = out.view(out.size(0), -1)
out = self.linear(out)
a = torch.abs(saliency_chans[:,0,:,:])
b = torch.abs(saliency_chans[:,1,:,:])
return torch.unsqueeze(a/(a+b), dim=1), out
def saliency_model():
return SaliencyModel(Block, [2,2,2,2])