-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathanechoic_noise.py
217 lines (177 loc) · 6.68 KB
/
anechoic_noise.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
import os
import numpy as np
import librosa as lr
import soundfile as sf
import matplotlib.pyplot as plt
def normalize(sig: np.ndarray, peak_db: float) -> np.ndarray:
"""
Normalize input signal to specified peak amplitude
:param np.ndarray sig: Single-channel input signal
:param float fs: Sample rate in [Hz]
:param float tau: Averaging time constant [s]
:return: Output signal, e.g. smoothed amplitude envelope
:rtype: np.ndarray
"""
sig /= np.max(np.abs(sig))
sig *= np.power(10, peak_db * 0.05)
return sig
def leaky_integrator(
signal_in: np.ndarray = np.zeros(100),
fs: int = 48000,
tau: float = 0.1,
) -> np.ndarray:
"""
Leaky integrator for envelope following, smoothing only applied to
decaying signal amplitudes
:param np.ndarray signal_in: Single-channel input signal
:param float fs: Sample rate in [Hz]
:param float tau: Averaging time constant [s]
:return: Output signal, e.g. smoothed amplitude envelope
:rtype: np.ndarray
"""
if signal_in.ndim != 1:
raise ValueError("Input must be single-channel.")
# averaging coefficient from time constant
alpha = 1 - np.exp(-1/(tau*fs))
signal_out = np.zeros(signal_in.shape)
signal_out[0] = alpha * signal_in[0]
for i in range(1, signal_out.shape[0]):
if signal_in[i] > signal_out[i-1]:
signal_out[i] = signal_in[i]
else:
signal_out[i] = alpha * signal_in[i] + (1 - alpha) * signal_out[i-1]
return signal_out
class NonStationaryInterference:
"""
Generator class for generating random mixtures
Attributes
----------
fs : float
Sample rate [Hz]
data_dir : str
Relative path to the `wavs` directory of the dataset
(https://zenodo.org/record/6974033)
Methods
-------
generate_signal(self, duration: float = 4.0, tau: float = 0.01):
Generates random mixture
colored_noise(self, length: float = 3, beta: float = 1.0):
Generates non-stationary, colored noise signal with the envelope
of a random sample mixture
get_random_sample(self):
Retrieves as random sample from the dataset
write_wav(self, out_fp, sig):
Writes a generated signal to wav file
"""
def __init__(
self,
fs: int = 48000,
data_dir: str ='./AID_folder/wavs/',
sample_density: int = 2,
segment_peak: float = -6.0,
beta: float = 0.0,
tau: float = 0.05,
) -> None:
"""
Constructs all the necessary attributes for the
NonStationaryInterference object.
Parameters
----------
fs : float
Sample rate [Hz]
data_dir : str
Relative path to the `wavs` directory of the dataset
(https://zenodo.org/record/6974033)
"""
self.fs = fs
self.data_dir = data_dir
# get list of all samples in dataset
self.file_list = [x for x in os.listdir(data_dir) if x.endswith('.wav')]
self.n_files = len(self.file_list)
def generate_signal(
self,
duration: float = 4.0,
sample_density: int = 2,
segment_peak: float = -6.0,
beta: float = 0.0,
tau: float = 0.01,
) -> np.ndarray:
"""
Generates a single-channel signal of specified length
:param float duration: Mixture signal length [s]
:param int sample_density: Number of samples concurrently playing (>=1)
:param float segment_peak: Peak amplitude of random mixture (<=0.) [dBFS]
:param float beta: Noise PSD exponent; 0-white, 1-pink, 2-brown, etc.
:param float tau: Leaky integrator time constant [s]
"""
len_out = int(np.round(self.fs * duration))
out_sig = np.zeros(len_out)
noise = self.colored_noise(duration=duration, beta=beta)
for _ in range(sample_density):
start_ind = 0
while start_ind < len_out:
sample = self.get_random_sample()
len_sample = sample.shape[0]
# check if next samples fit in output
overlap = max(start_ind + len_sample - len_out, 0)
if overlap > 0:
offset = np.random.randint(overlap)
sample = sample[offset:offset+len_sample-overlap]
# add sample
out_sig[start_ind:start_ind+len_sample] += sample
start_ind += len_sample
# normalize
out_sig /= np.max(np.abs(out_sig))
out_sig *= np.power(10, segment_peak * 0.05)
# generate amplitude-modulated colored noise
env = leaky_integrator(np.abs(out_sig), self.fs, tau)
noise *= env
noise /= np.max(np.abs(noise))
noise *= np.power(10, segment_peak * 0.05)
return (out_sig, noise, env)
def colored_noise(
self,
duration: float = 4.0,
beta: float = 1.0
) -> np.ndarray:
"""
Returns colored noise vector, called from self.generate_signal()
:param float duration: Noise signal length [s]
:param float beta: Noise PSD exponent; 0-white, 1-pink, 2-brown, etc.
"""
half_length = int(duration * self.fs / 2 + 1)
f = np.linspace(0, self.fs//2, num=half_length)
phase = np.exp(1j * 2 * np.pi * np.random.uniform(size=half_length))
mag = np.ones(half_length)
# noise magnitude slope
mag[1:] /= np.sqrt(np.power(f[1:], beta))
mag[0] = 0
# construct conjugate symmetric output spectrum
cplx = mag * phase
cplx = np.append(cplx, np.conj(np.flip(cplx[1:-1])))
# get time-domain signal
sig = np.real(np.fft.ifft(cplx))
sig -= np.mean(sig)
sig /= np.sqrt(np.mean(sig**2))
return sig
def get_random_sample(self):
"""Retrieves as random sample from the data set"""
rand_ind = np.random.randint(self.n_files)
filename = f"{self.data_dir}{self.file_list[rand_ind]}"
sample = sf.read(filename)[0]
return sample
def write_wav(self, fp, sig) -> None:
"""Writes a generated signal to wav file"""
print(f"Writing file: {fp}")
sf.write(fp, sig, samplerate=self.fs)
if __name__ == "__main__":
nsi = NonStationaryInterference(data_dir="./AID/wavs/")
num_mixtures = 10
for i in range(num_mixtures):
sig, noise, env = nsi.generate_signal(duration=8)
# write sample mixture
out_file = f"./output/mixture_{i:02d}.wav"
nsi.write_wav(out_file, sig)
# write colored noise signal
out_file = f"./output/noise_{i:02d}.wav"
nsi.write_wav(out_file, noise)