forked from google/gemmlowp
-
Notifications
You must be signed in to change notification settings - Fork 0
/
kernel_neon.h
1913 lines (1750 loc) · 74 KB
/
kernel_neon.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
// Copyright 2015 The Gemmlowp Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// kernel_neon.h: a collection of NEON optimized kernels.
// Check in kernel_default.h which one(s) are actually used by default.
// Others are mere experiments; they are still covered by tests
// in case they might be useful some day.
#ifndef GEMMLOWP_INTERNAL_KERNEL_NEON_H_
#define GEMMLOWP_INTERNAL_KERNEL_NEON_H_
#include "kernel.h"
#include <arm_neon.h>
#include <cassert>
namespace gemmlowp {
// The kernels here are specifically arm 32bit assembly, not arm 64bit.
#ifdef GEMMLOWP_NEON_32
// Our main GEMM kernel.
struct NEON_32_Kernel12x4Depth2 : KernelBase {
typedef KernelFormat<KernelSideFormat<CellFormat<4, 2>, 3>,
KernelSideFormat<CellFormat<4, 2>, 1> >
Format;
const char* Name() const override { return "NEON, 12x4, depth 2"; }
// TODO(benoitjacob): reorder function arguments so dst comes last
void Run(std::int32_t* dst_ptr, std::size_t dst_row_stride,
std::size_t dst_col_stride, const std::uint8_t* lhs_ptr,
const std::uint8_t* rhs_ptr, std::size_t start_depth,
std::size_t run_depth) const override {
ScopedProfilingLabel label("optimized kernel (NEON 12x4)");
// For iOS assembler, the %= style of local labels cause compilation errors,
// so use numerical ones instead. See
// http://stackoverflow.com/questions/3898435/labels-in-gcc-inline-assembly
// If you add any labels, remember to undef them at the end.
#define GEMMLOWP_LABEL_CLEAR_ACCUMULATORS "1"
#define GEMMLOWP_LABEL_BEFORE_LOOP "2"
#define GEMMLOWP_LABEL_LOOP "3"
#define GEMMLOWP_LABEL_AFTER_LOOP "4"
assert(dst_row_stride == 1);
(void)dst_row_stride;
asm volatile(
// Overview of register layout:
//
// A 2x4 cell of Rhs is stored in 16bit in d0--d1 (q0).
// A 12x2 block of 3 4x2 cells Lhs is stored in 16bit in d2--d7
// (q1--q3).
// A 12x4 block of accumulators is stored in 32bit in q4--q15.
//
// +-----+-----+-----+-----+
// |d0[0]|d0[1]|d0[2]|d0[3]|
// Rhs +-----+-----+-----+-----+
// |d1[0]|d1[1]|d1[2]|d1[3]|
// +-----+-----+-----+-----+
//
// | | | | |
//
// Lhs | | | | |
//
// +--+--+ - - - - +-----+-----+-----+-----+
// |d2|d3| | q4 | q5 | q6 | q7 |
// |d2|d3| | q4 | q5 | q6 | q7 |
// |d2|d3| | q4 | q5 | q6 | q7 |
// |d2|d3| | q4 | q5 | q6 | q7 |
// +--+--+ - - - - +-----+-----+-----+-----+
// |d4|d5| | q8 | q9 | q10 | q11 |
// |d4|d5| | q8 | q9 | q10 | q11 |
// |d4|d5| | q8 | q9 | q10 | q11 |
// |d4|d5| | q8 | q9 | q10 | q11 |
// +--+--+ - - - - +-----+-----+-----+-----+
// |d6|d7| | q12 | q13 | q14 | q15 |
// |d6|d7| | q12 | q13 | q14 | q15 |
// |d6|d7| | q12 | q13 | q14 | q15 |
// |d6|d7| | q12 | q13 | q14 | q15 |
// +--+--+ - - - - +-----+-----+-----+-----+
//
// Accumulator
// Load 1 Rhs cell of size 2x4
"vld1.8 {d0}, [%[rhs_ptr]]!\n"
// Load 3 Lhs cells of size 4x2 each
"vld1.8 {d2}, [%[lhs_ptr]]!\n"
"vld1.8 {d4}, [%[lhs_ptr]]!\n"
"vld1.8 {d6}, [%[lhs_ptr]]!\n"
// Check if start_depth==0 to decide whether we will clear
// accumulators or load existing accumulators.
"cmp %[start_depth], #0\n"
// Multiply dst_col_stride by 4 == sizeof(int32) to use
// it as a byte offset below.
"lsl %[dst_col_stride], #2\n"
"beq " GEMMLOWP_LABEL_CLEAR_ACCUMULATORS
"f\n"
// Load accumulators (start_depth != 0)
"mov r1, %[dst_ptr]\n"
"subs %[run_depth], #2\n"
"mov r0, r1\n"
"vld1.32 {d8, d9}, [r0]!\n"
"add r1, %[dst_col_stride]\n"
"vld1.32 {d16, d17}, [r0]!\n"
"vld1.32 {d24, d25}, [r0]\n"
"mov r0, r1\n"
"vld1.32 {d10, d11}, [r0]!\n"
"add r1, %[dst_col_stride]\n"
"vld1.32 {d18, d19}, [r0]!\n"
"vld1.32 {d26, d27}, [r0]\n"
"mov r0, r1\n"
"vld1.32 {d12, d13}, [r0]!\n"
"add r1, %[dst_col_stride]\n"
"vld1.32 {d20, d21}, [r0]!\n"
"vld1.32 {d28, d29}, [r0]\n"
"mov r0, r1\n"
"vld1.32 {d14, d15}, [r0]!\n"
"vld1.32 {d22, d23}, [r0]!\n"
"vld1.32 {d30, d31}, [r0]\n"
"b " GEMMLOWP_LABEL_BEFORE_LOOP "f\n"
GEMMLOWP_LABEL_CLEAR_ACCUMULATORS
":\n"
// Clear accumulators (start_depth == 0)
"vmov.s32 q4, #0\n"
"subs %[run_depth], #2\n"
"vmov.s32 q8, q4\n"
"vmov.s32 q12, q4\n"
"vmov.s32 q5, q4\n"
"vmov.s32 q9, q4\n"
"vmov.s32 q13, q4\n"
"vmov.s32 q6, q4\n"
"vmov.s32 q10, q4\n"
"vmov.s32 q14, q4\n"
"vmov.s32 q7, q4\n"
"vmov.s32 q11, q4\n"
"vmov.s32 q15, q4\n"
GEMMLOWP_LABEL_BEFORE_LOOP
":\n"
// If there are only two levels of depth, skip the loop.
"beq " GEMMLOWP_LABEL_AFTER_LOOP "f\n"
GEMMLOWP_LABEL_LOOP
":\n"
// Expand Lhs/Rhs cells to 16 bit.
// Note: moving theses vmovls further down to allow for
// longer data pipelining helps a little on A57 but is
// harmful on A53 --- It looks as if A53 doesn't like
// interleaving vmovl's into the vmlal's.
"vmovl.u8 q0, d0\n"
"vmovl.u8 q1, d2\n"
"vmovl.u8 q2, d4\n"
"vmovl.u8 q3, d6\n"
// Multiply-accumulate, level of depth 0
"vmlal.u16 q4, d2, d0[0]\n"
"vmlal.u16 q5, d2, d0[1]\n"
"vmlal.u16 q6, d2, d0[2]\n"
"vmlal.u16 q7, d2, d0[3]\n"
"vldr d2, [%[lhs_ptr]]\n"
"vmlal.u16 q8, d4, d0[0]\n"
"vmlal.u16 q9, d4, d0[1]\n"
"vmlal.u16 q10, d4, d0[2]\n"
"vmlal.u16 q11, d4, d0[3]\n"
"vldr d4, [%[lhs_ptr], #8]\n"
"vmlal.u16 q12, d6, d0[0]\n"
"vmlal.u16 q13, d6, d0[1]\n"
"vmlal.u16 q14, d6, d0[2]\n"
"vmlal.u16 q15, d6, d0[3]\n"
"vldr d6, [%[lhs_ptr], #16]\n"
"vldr d0, [%[rhs_ptr]]\n"
// Multiply-accumulate, level of depth 1
"vmlal.u16 q4, d3, d1[0]\n"
"vmlal.u16 q5, d3, d1[1]\n"
"add %[lhs_ptr], #24\n"
"vmlal.u16 q6, d3, d1[2]\n"
"vmlal.u16 q7, d3, d1[3]\n"
"add %[rhs_ptr], #8\n"
"vmlal.u16 q8, d5, d1[0]\n"
"vmlal.u16 q9, d5, d1[1]\n"
"subs %[run_depth], #2\n"
"vmlal.u16 q10, d5, d1[2]\n"
"vmlal.u16 q11, d5, d1[3]\n"
"vmlal.u16 q12, d7, d1[0]\n"
"vmlal.u16 q13, d7, d1[1]\n"
"vmlal.u16 q14, d7, d1[2]\n"
"vmlal.u16 q15, d7, d1[3]\n"
"bne " GEMMLOWP_LABEL_LOOP "b\n"
GEMMLOWP_LABEL_AFTER_LOOP
":\n"
// Do remaining arithmetic for the last 2 levels of depth.
// Expand Lhs/Rhs cells to 16 bit.
"vmovl.u8 q0, d0\n"
"vmovl.u8 q1, d2\n"
"vmovl.u8 q2, d4\n"
"vmovl.u8 q3, d6\n"
// Multiply-accumulate, level of depth 0
"vmlal.u16 q4, d2, d0[0]\n"
"vmlal.u16 q5, d2, d0[1]\n"
"vmlal.u16 q6, d2, d0[2]\n"
"vmlal.u16 q7, d2, d0[3]\n"
"vmlal.u16 q8, d4, d0[0]\n"
"vmlal.u16 q9, d4, d0[1]\n"
"vmlal.u16 q10, d4, d0[2]\n"
"vmlal.u16 q11, d4, d0[3]\n"
"vmlal.u16 q12, d6, d0[0]\n"
"vmlal.u16 q13, d6, d0[1]\n"
"vmlal.u16 q14, d6, d0[2]\n"
"vmlal.u16 q15, d6, d0[3]\n"
// Multiply-accumulate, level of depth 1
"vmlal.u16 q4, d3, d1[0]\n"
"vmlal.u16 q5, d3, d1[1]\n"
"vmlal.u16 q6, d3, d1[2]\n"
"vmlal.u16 q7, d3, d1[3]\n"
"vmlal.u16 q8, d5, d1[0]\n"
"vmlal.u16 q9, d5, d1[1]\n"
"vmlal.u16 q10, d5, d1[2]\n"
"vmlal.u16 q11, d5, d1[3]\n"
"vmlal.u16 q12, d7, d1[0]\n"
"vmlal.u16 q13, d7, d1[1]\n"
"vmlal.u16 q14, d7, d1[2]\n"
"vmlal.u16 q15, d7, d1[3]\n"
// Store accumulators
"mov r1, %[dst_ptr]\n"
"mov r0, r1\n"
"vst1.32 {d8, d9}, [r0]!\n"
"add r1, %[dst_col_stride]\n"
"vst1.32 {d16, d17}, [r0]!\n"
"vst1.32 {d24, d25}, [r0]\n"
"mov r0, r1\n"
"vst1.32 {d10, d11}, [r0]!\n"
"add r1, %[dst_col_stride]\n"
"vst1.32 {d18, d19}, [r0]!\n"
"vst1.32 {d26, d27}, [r0]\n"
"mov r0, r1\n"
"vst1.32 {d12, d13}, [r0]!\n"
"add r1, %[dst_col_stride]\n"
"vst1.32 {d20, d21}, [r0]!\n"
"vst1.32 {d28, d29}, [r0]\n"
"mov r0, r1\n"
"vst1.32 {d14, d15}, [r0]!\n"
"vst1.32 {d22, d23}, [r0]!\n"
"vst1.32 {d30, d31}, [r0]\n"
: // outputs
[lhs_ptr] "+r"(lhs_ptr), [rhs_ptr] "+r"(rhs_ptr),
[dst_ptr] "+r"(dst_ptr),
[run_depth] "+r"(run_depth)
: // inputs
[start_depth] "r"(start_depth),
[dst_col_stride] "r"(dst_col_stride)
: // clobbers
"cc", "memory", "r0", "r1",
// note: someone on internet says that quad registers are
// unsupported in the clobber list!
"d0", "d1", "d2", "d3", "d4", "d5", "d6", "d7", "d8", "d9", "d10",
"d11", "d12", "d13", "d14", "d15", "d16", "d17", "d18", "d19", "d20",
"d21", "d22", "d23", "d24", "d25", "d26", "d27", "d28", "d29", "d30",
"d31");
#undef GEMMLOWP_LABEL_CLEAR_ACCUMULATORS
#undef GEMMLOWP_LABEL_BEFORE_LOOP
#undef GEMMLOWP_LABEL_LOOP
#undef GEMMLOWP_LABEL_AFTER_LOOP
}
};
struct NEON_32_Kernel12x4Depth2Assuming12BitProducts : KernelBase {
typedef KernelFormat<
KernelSideFormat<CellFormat<4, 2, CellOrder::WidthMajor>, 3>,
KernelSideFormat<CellFormat<4, 2, CellOrder::WidthMajor>, 1> >
Format;
const char* Name() const override {
return "NEON, 12x4, depth 2, assuming 12-bit products";
}
// TODO(benoitjacob): reorder function arguments so dst comes last
void Run(std::int32_t* dst_ptr, std::size_t dst_row_stride,
std::size_t dst_col_stride, const std::uint8_t* lhs_ptr,
const std::uint8_t* rhs_ptr, std::size_t start_depth,
std::size_t run_depth) const override {
ScopedProfilingLabel label(
"optimized kernel (NEON 12x4, assuming 12-bit products)");
assert(dst_row_stride == 1);
(void)dst_row_stride;
// See comments above for why we need local numerical labels in our asm.
#define GEMMLOWP_LOOP_NEON_32_KERNEL_12X4_DEPTH2_ASSUMING_12BIT_PRODUCTS "1"
#define GEMMLOWP_LOAD_GLOBAL_ACCUMULATORS_NEON_32_KERNEL_12X4_DEPTH2_12BIT "2"
#define GEMMLOWP_LABEL_32 "3"
#define GEMMLOWP_LABEL_24 "4"
#define GEMMLOWP_LABEL_16 "5"
#define GEMMLOWP_LABEL_8 "6"
#define GEMMLOWP_LABEL_2 "7"
// This kernel is special in that it uses local 16-bit accumulators.
// Because it assumes that each product fits in 12 bits, it can accumulate
// 16 products into a local 16-bit accumulator without risking overflow.
// At that point, it must accumulate these local 16-bit accumulators back
// into global 32-bit accumulators, which have to be stored in memory for
// lack of register space.
// This 12x4 block of global accumulators is laid out as 3 cells of size 4x4
// stored in diagonal-major order like this for the first 4x4 cell:
//
// 0 4 8 12
// 13 1 5 9
// 10 14 2 6
// 7 11 15 3
//
// and likewise for the 2nd cell (16--31) and 3rd cell (32--47)
std::int32_t global_accumulators[3 * 4 * 4];
asm volatile(
// Compute stride between consecutive columns, in bytes
"mov r0, #4\n" // multiply by 4 = sizeof(int32)
"mul %[dst_col_stride], r0\n"
"cmp %[start_depth], #0\n"
"bne"
" " GEMMLOWP_LOAD_GLOBAL_ACCUMULATORS_NEON_32_KERNEL_12X4_DEPTH2_12BIT
"f\n"
// If start_depth==0, we need to clear our global accumulators
"mov r0, %[global_accumulators]\n"
"vmov.s32 q8, #0\n"
"vmov.s32 q9, q8\n"
"vst1.32 {d16,d17,d18,d19}, [r0]!\n"
"vst1.32 {d16,d17,d18,d19}, [r0]!\n"
"vst1.32 {d16,d17,d18,d19}, [r0]!\n"
"vst1.32 {d16,d17,d18,d19}, [r0]!\n"
"vst1.32 {d16,d17,d18,d19}, [r0]!\n"
"vst1.32 {d16,d17,d18,d19}, [r0]!\n"
"b " GEMMLOWP_LOOP_NEON_32_KERNEL_12X4_DEPTH2_ASSUMING_12BIT_PRODUCTS
"f\n"
// If start_depth!=0, we need to load our existing global accumulators
GEMMLOWP_LOAD_GLOBAL_ACCUMULATORS_NEON_32_KERNEL_12X4_DEPTH2_12BIT
":\n"
// Load global accumulators from destination matrix, column-major
"mov r1, %[dst_ptr]\n"
"mov r0, %[dst_col_stride]\n"
"sub r0, #32\n"
"vld1.32 {d0,d1}, [r1]!\n"
"vld1.32 {d8,d9}, [r1]!\n"
"vld1.32 {d16,d17}, [r1], r0\n"
"vld1.32 {d2,d3}, [r1]!\n"
"vld1.32 {d10,d11}, [r1]!\n"
"vld1.32 {d18,d19}, [r1], r0\n"
"vld1.32 {d4,d5}, [r1]!\n"
"vld1.32 {d12,d13}, [r1]!\n"
"vld1.32 {d20,d21}, [r1], r0\n"
"vld1.32 {d6,d7}, [r1]!\n"
"vld1.32 {d14,d15}, [r1]!\n"
"vld1.32 {d22,d23}, [r1], r0\n"
// Now we need to convert the global accumulator registers to
// 4x4-block-wise diagonal-major order. What we effectively want to do
// is to rotate the rows, however the accumulators are stored in
// column-major order in registers. So we achieve this by
// transposing, rotating the registers, and transposing again each
// 4x4 block.
//
// Transpose 3 4x4 blocks separately
"vtrn.32 q0, q1\n"
"vtrn.32 q2, q3\n"
"vswp d1, d4\n"
"vswp d3, d6\n"
"vtrn.32 q4, q5\n"
"vtrn.32 q6, q7\n"
"vswp d9, d12\n"
"vswp d11, d14\n"
"vtrn.32 q8, q9\n"
"vtrn.32 q10, q11\n"
"vswp d17, d20\n"
"vswp d19, d22\n"
// Rotate the registers
"vext.32 q1, q1, q1, #1\n"
"vext.32 q2, q2, q2, #2\n"
"vext.32 q3, q3, q3, #3\n"
"vext.32 q5, q5, q5, #1\n"
"vext.32 q6, q6, q6, #2\n"
"vext.32 q7, q7, q7, #3\n"
"vext.32 q9, q9, q9, #1\n"
"vext.32 q10, q10, q10, #2\n"
"vext.32 q11, q11, q11, #3\n"
// Transpose again and store into our global accumulators
// buffer. These two operations are done at once using vst4.
"mov r0, %[global_accumulators]\n"
"vst4.32 {d0,d2,d4,d6}, [r0]!\n"
"vst4.32 {d1,d3,d5,d7}, [r0]!\n"
"vst4.32 {d8,d10,d12,d14}, [r0]!\n"
"vst4.32 {d9,d11,d13,d15}, [r0]!\n"
"vst4.32 {d16,d18,d20,d22}, [r0]!\n"
"vst4.32 {d17,d19,d21,d23}, [r0]!\n"
/* Main loop */
GEMMLOWP_LOOP_NEON_32_KERNEL_12X4_DEPTH2_ASSUMING_12BIT_PRODUCTS
":\n"
// Overview of register layout:
//
// Registers q4--q16 are the local 16-bit accumulators.
// However, each entry in the result matrix is represented
// by *two* local 16-bit accumulators: one for even levels
// of depth and one for odd levels of depth. These correspond
// to the scalars at even and odd indices within each q-register.
// Thus we effectively use 32 bits of register space for each
// entry in the result matrix. The accumulators register layout
// is the same as was described above for the global 32-bit
// accumulators (3 cells of size 4x4 in diagonal-major order)
// with the only difference that instead of 32bit values we have
// pairs of 16bit values.
//
// A 2x4 cell of Rhs is stored in 8bit in d0.
// A 12x2 block of 3 4x2 cells Lhs is stored in 8bit in d1--d3.
//
// +--------+--------+--------+--------+
// |d0[0] |d0[2] |d0[4] |d0[6] |
// Rhs +--------+--------+--------+--------+
// |d0[1] |d0[3] |d0[5] |d0[7] |
// +--------+--------+--------+--------+
//
// | | | | |
//
// Lhs | | | | |
//
// +-----+-----+ - - - +--------+--------+--------+--------+
// |d1[0]|d1[1]| |q4[0,1] |q5[0,1] |q6[0,1] |q7[0,1] |
// |d1[2]|d1[3]| |q7[2,3] |q4[2,3] |q5[2,3] |q6[2,3] |
// |d1[4]|d1[5]| |q6[4,5] |q7[4,5] |q4[4,5] |q5[4,5] |
// |d1[6]|d1[7]| |q5[6,7] |q6[6,7] |q7[6,7] |q4[6,7] |
// +-----+-----+ - - - +--------+--------+--------+--------+
// |d2[0]|d2[1]| |q8[0,1] |q8[0,1] |q8[0,1] |q8[0,1] |
// |d2[2]|d2[3]| |q9[2,3] |q9[2,3] |q9[2,3] |q9[2,3] |
// |d2[4]|d2[5]| |q10[4,5]|q10[4,5]|q10[4,5]|q10[4,5]|
// |d2[6]|d2[7]| |q11[6,7]|q11[6,7]|q11[6,7]|q11[6,7]|
// +-----+-----+ - - - +--------+--------+--------+--------+
// |d3[0]|d3[1]| |q12[0,1]|q12[0,1]|q12[0,1]|q12[0,1]|
// |d3[2]|d3[3]| |q13[2,3]|q13[2,3]|q13[2,3]|q13[2,3]|
// |d3[4]|d3[5]| |q14[4,5]|q14[4,5]|q14[4,5]|q14[4,5]|
// |d3[6]|d3[7]| |q15[6,7]|q15[6,7]|q15[6,7]|q15[6,7]|
// +-----+-----+ - - - +--------+--------+--------+--------+
//
// Local 16-bit accumulators
// Note: 2 scalars per matrix entry
#define GEMMLOWP_ACCUMULATE_2_LEVELS_OF_DEPTH \
/* Load 3 Lhs cells of size 4x2 */ \
"vld1.8 {d1,d2,d3}, [%[lhs_ptr]:64]!\n" \
\
/* Load 1 Rhs cell of size 2x4 */ \
"vld1.8 {d0}, [%[rhs_ptr]:64]!\n" \
\
/* Multiply-accumulate */ \
"vmlal.u8 q4, d1, d0\n" \
"vmlal.u8 q8, d2, d0\n" \
"vmlal.u8 q12, d3, d0\n" \
"vext.8 d0, d0, d0, #2\n" \
"vmlal.u8 q5, d1, d0\n" \
"vmlal.u8 q9, d2, d0\n" \
"vmlal.u8 q13, d3, d0\n" \
"vext.8 d0, d0, d0, #2\n" \
"vmlal.u8 q6, d1, d0\n" \
"vmlal.u8 q10, d2, d0\n" \
"vmlal.u8 q14, d3, d0\n" \
"vext.8 d0, d0, d0, #2\n" \
"vmlal.u8 q7, d1, d0\n" \
"vmlal.u8 q11, d2, d0\n" \
"vmlal.u8 q15, d3, d0\n" \
\
"sub %[run_depth], #2\n"
#define GEMMLOWP_ACCUMULATE_8_LEVELS_OF_DEPTH \
GEMMLOWP_ACCUMULATE_2_LEVELS_OF_DEPTH \
GEMMLOWP_ACCUMULATE_2_LEVELS_OF_DEPTH \
GEMMLOWP_ACCUMULATE_2_LEVELS_OF_DEPTH \
GEMMLOWP_ACCUMULATE_2_LEVELS_OF_DEPTH
// Clear local 16-bit accumulators
"vmov.s32 q4, #0\n"
"vmov.s32 q5, q4\n"
"vmov.s32 q6, q4\n"
"vmov.s32 q7, q4\n"
"vmov.s32 q8, q4\n"
"vmov.s32 q9, q4\n"
"vmov.s32 q10, q4\n"
"vmov.s32 q11, q4\n"
"vmov.s32 q12, q4\n"
"vmov.s32 q13, q4\n"
"vmov.s32 q14, q4\n"
"vmov.s32 q15, q4\n"
// Select a suitable number of depth levels
// to process at this iteration. TODO (benoitjacob) I guess that
// someone who really knows asm should make this a jump table.
"cmp %[run_depth], #32\n"
"bge " GEMMLOWP_LABEL_32
"f\n"
"cmp %[run_depth], #24\n"
"bge " GEMMLOWP_LABEL_24
"f\n"
"cmp %[run_depth], #16\n"
"bge " GEMMLOWP_LABEL_16
"f\n"
"cmp %[run_depth], #8\n"
"bge " GEMMLOWP_LABEL_8
"f\n"
"b " GEMMLOWP_LABEL_2 "f\n"
GEMMLOWP_LABEL_32
":\n" GEMMLOWP_ACCUMULATE_8_LEVELS_OF_DEPTH GEMMLOWP_LABEL_24
":\n" GEMMLOWP_ACCUMULATE_8_LEVELS_OF_DEPTH GEMMLOWP_LABEL_16
":\n" GEMMLOWP_ACCUMULATE_8_LEVELS_OF_DEPTH GEMMLOWP_LABEL_8
":\n" GEMMLOWP_ACCUMULATE_2_LEVELS_OF_DEPTH
GEMMLOWP_ACCUMULATE_2_LEVELS_OF_DEPTH
GEMMLOWP_ACCUMULATE_2_LEVELS_OF_DEPTH GEMMLOWP_LABEL_2
":\n" GEMMLOWP_ACCUMULATE_2_LEVELS_OF_DEPTH
// Accumulate the local accumulators into the global accumulators.
// This is about summing adjacent pairs of 16-bit scalars into
// single 32-bit scalars, so we use pairwise long addition (vpadal).
"mov r0, %[global_accumulators]\n"
"mov r1, %[global_accumulators]\n"
"vld1.32 {d0,d1,d2,d3}, [r0]!\n"
"vld1.32 {d4,d5,d6,d7}, [r0]!\n"
"vpadal.u16 q0, q4\n"
"vpadal.u16 q1, q5\n"
"vpadal.u16 q2, q6\n"
"vpadal.u16 q3, q7\n"
"vst1.32 {d0,d1,d2,d3}, [r1]!\n"
"vst1.32 {d4,d5,d6,d7}, [r1]!\n"
"vld1.32 {d0,d1,d2,d3}, [r0]!\n"
"vld1.32 {d4,d5,d6,d7}, [r0]!\n"
"vpadal.u16 q0, q8\n"
"vpadal.u16 q1, q9\n"
"vpadal.u16 q2, q10\n"
"vpadal.u16 q3, q11\n"
"vst1.32 {d0,d1,d2,d3}, [r1]!\n"
"vst1.32 {d4,d5,d6,d7}, [r1]!\n"
"vld1.32 {d0,d1,d2,d3}, [r0]!\n"
"vld1.32 {d4,d5,d6,d7}, [r0]!\n"
"vpadal.u16 q0, q12\n"
"vpadal.u16 q1, q13\n"
"vpadal.u16 q2, q14\n"
"vpadal.u16 q3, q15\n"
"vst1.32 {d0,d1,d2,d3}, [r1]!\n"
"vst1.32 {d4,d5,d6,d7}, [r1]!\n"
// Loop.
"cmp %[run_depth], #0\n"
"bne " GEMMLOWP_LOOP_NEON_32_KERNEL_12X4_DEPTH2_ASSUMING_12BIT_PRODUCTS
"b\n"
#undef GEMMLOWP_CLEAR_LOCAL_ACCUMULATORS
#undef GEMMLOWP_ACCUMULATE_8_LEVELS_OF_DEPTH
#undef GEMMLOWP_ACCUMULATE_2_LEVELS_OF_DEPTH
#undef GEMMLOWP_ADD_TO_GLOBAL_ACCUMULATORS
/* end of main loop */
// Store the global accumulators to the destination matrix
// (column-major)
// This is the reverse of the steps that we followed at the beginning
// when we load the global accumulators from the destination matrix.
// The problem is the same: how to convert 4x4 blocks
// between column-major and diagonal-major orders.
// Like above, we do this by rotating rows, and we achieve that by
// tranposing, rotating columns, and transposing again.
//
// Load and transpose 4x4 blocks of global accumulators
// These two steps are done at once by the vld4 instruction.
"mov r0, %[global_accumulators]\n"
"vld4.32 {d0,d2,d4,d6}, [r0]!\n"
"vld4.32 {d1,d3,d5,d7}, [r0]!\n"
"vld4.32 {d8,d10,d12,d14}, [r0]!\n"
"vld4.32 {d9,d11,d13,d15}, [r0]!\n"
"vld4.32 {d16,d18,d20,d22}, [r0]!\n"
"vld4.32 {d17,d19,d21,d23}, [r0]!\n"
// Rotate the rows of each 4x4 block
"vext.32 q1, q1, q1, #3\n"
"vext.32 q2, q2, q2, #2\n"
"vext.32 q3, q3, q3, #1\n"
"vext.32 q5, q5, q5, #3\n"
"vext.32 q6, q6, q6, #2\n"
"vext.32 q7, q7, q7, #1\n"
"vext.32 q9, q9, q9, #3\n"
"vext.32 q10, q10, q10, #2\n"
"vext.32 q11, q11, q11, #1\n"
// Transpose again each 4x4 block
"vtrn.32 q0, q1\n"
"vtrn.32 q2, q3\n"
"vswp d1, d4\n"
"vswp d3, d6\n"
"vtrn.32 q4, q5\n"
"vtrn.32 q6, q7\n"
"vswp d9, d12\n"
"vswp d11, d14\n"
"vtrn.32 q8, q9\n"
"vtrn.32 q10, q11\n"
"vswp d17, d20\n"
"vswp d19, d22\n"
// Store into the column-major destination matrix
"mov r1, %[dst_ptr]\n"
"mov r0, %[dst_col_stride]\n"
"sub r0, #32\n"
"vst1.32 {d0,d1}, [r1]!\n"
"vst1.32 {d8,d9}, [r1]!\n"
"vst1.32 {d16,d17}, [r1], r0\n"
"vst1.32 {d2,d3}, [r1]!\n"
"vst1.32 {d10,d11}, [r1]!\n"
"vst1.32 {d18,d19}, [r1], r0\n"
"vst1.32 {d4,d5}, [r1]!\n"
"vst1.32 {d12,d13}, [r1]!\n"
"vst1.32 {d20,d21}, [r1], r0\n"
"vst1.32 {d6,d7}, [r1]!\n"
"vst1.32 {d14,d15}, [r1]!\n"
"vst1.32 {d22,d23}, [r1], r0\n"
: // outputs
[lhs_ptr] "+r"(lhs_ptr), [rhs_ptr] "+r"(rhs_ptr),
[dst_ptr] "+r"(dst_ptr),
[run_depth] "+r"(run_depth)
: // inputs
[start_depth] "r"(start_depth), [dst_col_stride] "r"(dst_col_stride),
[global_accumulators] "r"(&global_accumulators[0])
: // clobbers
"cc", "memory", "r0", "r1",
// note: someone on internet says that quad registers are
// unsupported in the clobber list!
"d0", "d1", "d2", "d3", "d4", "d5", "d6", "d7", "d8", "d9", "d10",
"d11", "d12", "d13", "d14", "d15", "d16", "d17", "d18", "d19", "d20",
"d21", "d22", "d23", "d24", "d25", "d26", "d27", "d28", "d29", "d30",
"d31");
#undef GEMMLOWP_LOOP_NEON_32_KERNEL_12X4_DEPTH2_ASSUMING_12BIT_PRODUCTS
#undef GEMMLOWP_LOAD_GLOBAL_ACCUMULATORS_NEON_32_KERNEL_12X4_DEPTH2_12BIT
#undef GEMMLOWP_LABEL_32
#undef GEMMLOWP_LABEL_24
#undef GEMMLOWP_LABEL_16
#undef GEMMLOWP_LABEL_8
#undef GEMMLOWP_LABEL_2
}
};
struct NEON_32bit_GEMM_Int8Operands_LhsNonzero : KernelBase {
typedef KernelFormat<
KernelSideFormatInt8<CellFormat<4, 16, CellOrder::WidthMajor>, 1>,
KernelSideFormatInt8<CellFormat<2, 16, CellOrder::WidthMajor>, 1> >
Format;
const char* Name() const override {
return "NEON, 4x2, depth 16, accumulating two within signed int16";
}
// TODO(benoitjacob): reorder function arguments so dst comes last
void Run(std::int32_t* dst_ptr, std::size_t dst_row_stride,
std::size_t dst_col_stride, const std::uint8_t* lhs_ptr,
const std::uint8_t* rhs_ptr, std::size_t start_depth,
std::size_t run_depth) const override {
(void)dst_row_stride;
#define GEMMLOWP_LABEL_AFTER_LOOP "1"
#define GEMMLOWP_LABEL_LOOP "2"
#define GEMMLOWP_LABEL_ACCUMULATE_EXISTING_DST_VALUES "3"
#define GEMMLOWP_LABEL_STORE "4"
asm volatile(
// Multiply dst_col_stride by 4 == sizeof(int32) to use
// it as a byte offset below.
"lsl %[dst_col_stride], %[dst_col_stride], #2\n"
// Overview of register layout:
//
// A 2x16 block of Rhs is stored in 8 bit in d0--d3.
// A 4x16 block of Lhs is stored in 8 bit in d4--d7. That is only
// half of the register space required, so we loop over these registers
// twice. Only half of it, a 2x16 block, is stored in d4--d7 at
// any given time.
//
// A 4x2 block of accumulators is stored in q8--q15 (as 4x32 bit
// components which need to be horizontally-added at the end)
//
// The Lhs vectors are multiplied by the Rhs vectors with a widening
// multiply over the 8 first levels of depth, producing int16x8
// vectors of products for each position in the accumulator matrix.
// Here comes the special trick: since the operands are signed int8,
// their range being [ -2^7 , 2^7 ), their products are in range
// [ -2^14 , 2^14 - 1 ), meaning that we can add two such values
// without any risk of overflowing int16.
// We thus proceed with the 8 next levels of depth, multiplying
// again Lhs by Rhs, accumulating into this existing int16x8 vector.
//
// Only then, having processed 16 levels of depth, do we need to
// horizontally add these int16x8 accumulators into the final
// int32x4 accumulators.
//
// As we do not have enough registers to store all 16 int16x8
// temporary-16bit-accumulators, we have them cycle through q4--q7.
//
//
// Register layout (ignoring the q4--q7 temporary 16bit accumulators):
//
// +----+----+
// | d0 | d2 |
// | . | . |
// | . | . |
// | . | . |
// Rhs +----+----+
// | d1 | d3 |
// | . | . |
// | . | . |
// | . | . |
// +----+----+
//
// | | |
//
// Lhs | | |
//
// +--------+--------+ - - - - +----+----+
// | d4 ... | d5 ... | | q8 | q9 |
// | d6 ... | d7 ... | | q10| q11|
// | d4 ... | d5 ... | | q12| q13|
// | d6 ... | d7 ... | | q14| q15|
// +--------+--------+ - - - - +----+----+
//
// Accumulator
//
// Clear accumulators, and, interleaved with it,
// initial loads of the first loop iteration,
// taken out of the loop so that in the loop itself we have
// optimal streaming of data from memory.
"vldr d0, [%[rhs_ptr], #0]\n"
"vmov.i32 q8, #0\n"
"vldr d4, [%[lhs_ptr], #0]\n"
"vmov.i32 q9, #0\n"
"vldr d2, [%[rhs_ptr], #16]\n"
"vmov.i32 q10, q8\n"
"vldr d6, [%[lhs_ptr], #16]\n"
"vmov.i32 q11, q8\n"
"vldr d1, [%[rhs_ptr], #8]\n"
"vmov.i32 q12, q8\n"
"vldr d5, [%[lhs_ptr], #8]\n"
"vmov.i32 q13, q8\n"
"vldr d3, [%[rhs_ptr], #24]\n"
"vmov.i32 q14, q8\n"
"vldr d7, [%[lhs_ptr], #24]\n"
"vmov.i32 q15, q8\n"
// General loop.
GEMMLOWP_LABEL_LOOP
":\n"
// Multiply 8 first levels of depth.
"vmull.s8 q4, d0, d4\n"
"add %[rhs_ptr], %[rhs_ptr], #32\n"
"vmull.s8 q5, d2, d4\n"
"vldr d4, [%[lhs_ptr], #32]\n"
"vmull.s8 q6, d0, d6\n"
"vmull.s8 q7, d2, d6\n"
"vldr d6, [%[lhs_ptr], #48]\n"
// Multiply-accumulate second-half, again into the same
// 16bit local accumulator registers. This is where we
// take advantage of having int8 instead of uint8 and therefore
// being able to accumulate two products into int16.
"vmlal.s8 q4, d1, d5\n"
"vmlal.s8 q5, d3, d5\n"
"vldr d5, [%[lhs_ptr], #40]\n"
"vmlal.s8 q6, d1, d7\n"
"vmlal.s8 q7, d3, d7\n"
"vldr d7, [%[lhs_ptr], #56]\n"
// Add pairwise, accumulate into 32-bit accumulators.
"vpadal.s16 q8, q4\n"
"add %[lhs_ptr], %[lhs_ptr], #64\n"
"vpadal.s16 q9, q5\n"
"subs %[run_depth], %[run_depth], #16\n"
"vpadal.s16 q10, q6\n"
"vpadal.s16 q11, q7\n"
"beq " GEMMLOWP_LABEL_AFTER_LOOP
"f\n"
// Multiply first half.
"vmull.s8 q4, d0, d4\n"
"vmull.s8 q5, d2, d4\n"
"vldr d4, [%[lhs_ptr], #0]\n"
"vmull.s8 q6, d0, d6\n"
"vldr d0, [%[rhs_ptr], #0]\n"
"vmull.s8 q7, d2, d6\n"
"vldr d2, [%[rhs_ptr], #16]\n"
// Multiply-accumulate second-half, again into the same
// 16bit local accumulator registers. This is where we
// take advantage of having int8 instead of uint8 and therefore
// being able to accumulate two products into int16.
"vmlal.s8 q4, d1, d5\n"
"vldr d6, [%[lhs_ptr], #16]\n"
"vmlal.s8 q5, d3, d5\n"
"vldr d5, [%[lhs_ptr], #8]\n"
"vmlal.s8 q6, d1, d7\n"
"vldr d1, [%[rhs_ptr], #8]\n"
"vmlal.s8 q7, d3, d7\n"
"vldr d3, [%[rhs_ptr], #24]\n"
// Add pairwise, accumulate into 32-bit accumulators.
"vpadal.s16 q12, q4\n"
"vldr d7, [%[lhs_ptr], #24]\n"
"vpadal.s16 q13, q5\n"
"vpadal.s16 q14, q6\n"
"vpadal.s16 q15, q7\n"
"b " GEMMLOWP_LABEL_LOOP "b\n"
GEMMLOWP_LABEL_AFTER_LOOP
":\n"
// Multiply first half.
"vmull.s8 q4, d0, d4\n"
"vmull.s8 q5, d2, d4\n"
"vmull.s8 q6, d0, d6\n"
"vmull.s8 q7, d2, d6\n"
// Multiply-accumulate second-half, again into the same
// 16bit local accumulator registers. This is where we
// take advantage of having int8 instead of uint8 and therefore
// being able to accumulate two products into int16.
"vmlal.s8 q4, d1, d5\n"
"vmlal.s8 q5, d3, d5\n"
"vmlal.s8 q6, d1, d7\n"
"vmlal.s8 q7, d3, d7\n"
// Add pairwise, accumulate into 32-bit accumulators.
"vpadal.s16 q12, q4\n"
"vpadal.s16 q13, q5\n"
"vpadal.s16 q14, q6\n"
"vpadal.s16 q15, q7\n"
"cmp %[start_depth], #0\n"
// Reduce 32bit accumulators horizontally.
"vpadd.s32 d0, d16, d17\n"
"vpadd.s32 d1, d18, d19\n"
"vpadd.s32 d2, d20, d21\n"
"vpadd.s32 d3, d22, d23\n"
"vpadd.s32 d4, d24, d25\n"
"vpadd.s32 d5, d26, d27\n"
"vpadd.s32 d6, d28, d29\n"
"vpadd.s32 d7, d30, d31\n"
"bne " GEMMLOWP_LABEL_ACCUMULATE_EXISTING_DST_VALUES
"f\n"
// Reduce 32bit accumulators horizontally, second pass
// (each pass adds pairwise. we need to add 4-wise).
"vpadd.s32 d8, d0, d2\n"
"vpadd.s32 d9, d4, d6\n"
"vpadd.s32 d10, d1, d3\n"
"vpadd.s32 d11, d5, d7\n"
"b " GEMMLOWP_LABEL_STORE "f\n"
GEMMLOWP_LABEL_ACCUMULATE_EXISTING_DST_VALUES
":\n"
// Reduce 32bit accumulators horizontally, second pass
// (each pass adds pairwise. we need to add 4-wise),
// and load destination values from memory.
"mov r0, %[dst_ptr]\n"
"vld1.32 {d16, d17}, [r0], %[dst_col_stride]\n"
"vpadd.s32 d8, d0, d2\n"
"vpadd.s32 d9, d4, d6\n"
"vld1.32 {d18, d19}, [r0]\n"
"vpadd.s32 d10, d1, d3\n"
"vpadd.s32 d11, d5, d7\n"
// Add horizontally-reduced accumulators into
// the values loaded from memory
"vadd.s32 q4, q8, q4\n"
"vadd.s32 q5, q9, q5\n"
GEMMLOWP_LABEL_STORE
":\n"
// Store back into memory
"mov r0, %[dst_ptr]\n"
"vst1.32 {d8, d9}, [r0], %[dst_col_stride]\n"
"vst1.32 {d10, d11}, [r0]\n"
: // outputs
[lhs_ptr] "+r"(lhs_ptr), [rhs_ptr] "+r"(rhs_ptr),
[dst_ptr] "+r"(dst_ptr), [run_depth] "+r"(run_depth)
: // inputs
[start_depth] "r"(start_depth),
[dst_col_stride] "r"(dst_col_stride)
: // clobbers
"cc", "memory", "r0", "d0", "d1", "d2", "d3", "d4", "d5", "d6", "d7",
"d8", "d9", "d10", "d11", "d12", "d13", "d14", "d15", "d16", "d17",
"d18", "d19", "d20", "d21", "d22", "d23", "d24", "d25", "d26", "d27",
"d28", "d29", "d30", "d31");
#undef GEMMLOWP_LABEL_LOOP
#undef GEMMLOWP_LABEL_AFTER_LOOP
#undef GEMMLOWP_LABEL_ACCUMULATE_EXISTING_DST_VALUES
#undef GEMMLOWP_LABEL_STORE
}
};
// Same as NEON_32bit_GEMM_Int8Operands_LhsNonzero, but uses a side format that
// requires that user inputs were originally int8. This avoids the uint8->int8
// conversion in the pack step.
struct NEON_32bit_GEMM_Int8Operands_LhsNonzero_Int8Inputs
: NEON_32bit_GEMM_Int8Operands_LhsNonzero {
typedef KernelFormat<
KernelSideFormatInt8Inputs<CellFormat<4, 16, CellOrder::WidthMajor>, 1>,
KernelSideFormatInt8Inputs<CellFormat<2, 16, CellOrder::WidthMajor>, 1> >
Format;
};
#endif // GEMMLOWP_NEON_32
// The kernels here are specifically arm 64bit assembly, not arm 32bit.
#ifdef GEMMLOWP_NEON_64
struct NEON_64bit_GEMM_Int8Operands_LhsNonzero : KernelBase {
typedef KernelFormat<
KernelSideFormatInt8<CellFormat<4, 16, CellOrder::WidthMajor>, 1>,
KernelSideFormatInt8<CellFormat<4, 16, CellOrder::WidthMajor>, 1> >
Format;
const char* Name() const override {
return "NEON, 4x4, depth 16, accumulating two within signed int16";
}
// TODO(benoitjacob): reorder function arguments so dst comes last
void Run(std::int32_t* dst_ptr, std::size_t dst_row_stride,
std::size_t dst_col_stride, const std::uint8_t* lhs_ptr,
const std::uint8_t* rhs_ptr, std::size_t start_depth,
std::size_t run_depth) const override {
(void)dst_row_stride;
#define GEMMLOWP_LABEL_AFTER_LOOP_LAST16 "1"
#define GEMMLOWP_LABEL_LOOP "2"
#define GEMMLOWP_LABEL_ACCUMULATE_EXISTING_DST_VALUES "3"
#define GEMMLOWP_LABEL_STORE "4"
asm volatile(
// Clear accumulators, and, interleaved with it,
// initial loads of the first loop iteration,
// taken out of the loop so that in the loop itself we have
// optimal streaming of data from memory.
"ld1 {v0.16b}, [%[rhs_ptr]], #16\n"
"dup v16.4s, wzr\n"
"ld1 {v4.16b}, [%[lhs_ptr]], #16\n"
"dup v17.4s, wzr\n"
"ld1 {v1.16b}, [%[rhs_ptr]], #16\n"
"dup v18.4s, wzr\n"
"ld1 {v5.16b}, [%[lhs_ptr]], #16\n"
"dup v19.4s, wzr\n"
"ld1 {v2.16b}, [%[rhs_ptr]], #16\n"
"dup v20.4s, wzr\n"
"ld1 {v3.16b}, [%[rhs_ptr]], #16\n"
"dup v21.4s, wzr\n"
"ld1 {v6.16b}, [%[lhs_ptr]], #16\n"
"dup v22.4s, wzr\n"
"ld1 {v7.16b}, [%[lhs_ptr]], #16\n"
"dup v23.4s, wzr\n"
"dup v24.4s, wzr\n"
"dup v25.4s, wzr\n"
"dup v26.4s, wzr\n"
"dup v27.4s, wzr\n"
"dup v28.4s, wzr\n"
"dup v29.4s, wzr\n"
"dup v30.4s, wzr\n"
"dup v31.4s, wzr\n"
// Multiply dst_col_stride by 4 == sizeof(int32) to use
// it as a byte offset below.
"lsl %[dst_col_stride], %[dst_col_stride], #2\n"
// Initial arithmetic of the first loop iteration,
// taken out of the loop so that in the loop itself we have
// optimal streaming of data from memory.
"smull v8.8h, v0.8b, v4.8b\n"
"smull v9.8h, v1.8b, v4.8b\n"