-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathggsimple.c
571 lines (536 loc) · 22.2 KB
/
ggsimple.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
#include <assert.h>
#include "mgpriv.h"
#include "gfa-priv.h"
#include "kalloc.h"
#include "bseq.h"
#include "algo.h"
#include "sys.h"
#include "ggen.h"
#include "kvec-km.h"
#include <stdbool.h>
int32_t mg_gc_index(void *km, int min_mapq, int min_map_len, int min_depth_len, const gfa_t *g, int32_t n_seq, mg_gchains_t *const* gcs,
double *a_dens, int32_t **soff_, int32_t **qoff_, mg_intv_t **sintv_, mg_intv_t **qintv_)
{
int32_t t, i, j, max_acnt, *scnt, *soff, *qcnt, *qoff;
int64_t sum_acnt, sum_alen;
mg_intv_t *sintv, *qintv;
// count the number of intervals on each segment
KCALLOC(km, scnt, g->n_seg);
KCALLOC(km, qcnt, n_seq);
for (t = 0, max_acnt = 0; t < n_seq; ++t) {
const mg_gchains_t *gt = gcs[t];
for (i = 0; i < gt->n_gc; ++i) {
const mg_gchain_t *gc = >->gc[i];
if (gc->id != gc->parent) continue;
if (gc->blen < min_depth_len || gc->mapq < min_mapq) continue;
if (gc->n_anchor > max_acnt) max_acnt = gc->n_anchor;
++qcnt[t];
for (j = 0; j < gc->cnt; ++j)
++scnt[gt->lc[gc->off + j].v>>1];
}
}
if (max_acnt == 0) { // no gchain
kfree(km, scnt); kfree(km, qcnt);
return 0;
}
// compute soff[] and qoff[]
KMALLOC(km, soff, g->n_seg + 1);
KMALLOC(km, qoff, n_seq + 1);
for (soff[0] = 0, i = 1; i <= g->n_seg; ++i)
soff[i] = soff[i - 1] + scnt[i - 1];
for (qoff[0] = 0, i = 1; i <= n_seq; ++i)
qoff[i] = qoff[i - 1] + qcnt[i - 1];
// populate the interval list
memset(scnt, 0, 4 * g->n_seg);
memset(qcnt, 0, 4 * n_seq);
KMALLOC(km, sintv, soff[g->n_seg]);
KMALLOC(km, qintv, qoff[n_seq]);
sum_acnt = sum_alen = 0;
for (t = 0; t < n_seq; ++t) {
const mg_gchains_t *gt = gcs[t];
for (i = 0; i < gt->n_gc; ++i) {
const mg_gchain_t *gc = >->gc[i];
mg_intv_t *p;
if (gc->id != gc->parent) continue;
if (gc->blen < min_depth_len || gc->mapq < min_mapq) continue;
p = &qintv[qoff[t] + qcnt[t]];
++qcnt[t];
p->st = gc->qs, p->en = gc->qe, p->rev = 0, p->far = -1, p->i = -1;
for (j = 0; j < gc->cnt; ++j) {
const mg_llchain_t *lc = >->lc[gc->off + j];
int32_t rs, re, tmp;
if (lc->cnt > 0) { // compute start and end on the forward strand on the segment
const mg128_t *qs = >->a[lc->off];
const mg128_t *qe = >->a[lc->off + lc->cnt - 1];
int32_t rs0 = (int32_t)qs->x + 1 - (int32_t)(qs->y>>32&0xff);
int32_t re0 = (int32_t)qe->x;
assert(rs0 >= 0 && re0 > rs0 && re0 < g->seg[lc->v>>1].len);
sum_alen += re0 - rs0, sum_acnt += (qe->x>>32) - (qs->x>>32) + 1;
rs = 0, re = g->seg[lc->v>>1].len;
if (j == 0) rs = gc->p? gc->p->ss : rs0;
if (j == gc->cnt - 1) re = gc->p? gc->p->ee : re0;
if (lc->v&1) // swap rs and re
tmp = rs, rs = g->seg[lc->v>>1].len - re, re = g->seg[lc->v>>1].len - tmp;
} else rs = 0, re = g->seg[lc->v>>1].len;
p = &sintv[soff[lc->v>>1] + scnt[lc->v>>1]];
++scnt[lc->v>>1];
p->st = rs, p->en = re, p->rev = lc->v&1, p->far = -1, p->i = -1;
}
}
}
*a_dens = (double)sum_acnt / sum_alen;
// sort and index intervals
for (i = 0; i < g->n_seg; ++i) {
assert(soff[i+1] - soff[i] == scnt[i]);
mg_intv_index(soff[i+1] - soff[i], &sintv[soff[i]]);
}
kfree(km, scnt);
for (i = 0; i < n_seq; ++i) {
assert(qoff[i+1] - qoff[i] == qcnt[i]);
mg_intv_index(qoff[i+1] - qoff[i], &qintv[qoff[i]]);
}
kfree(km, qcnt);
*sintv_ = sintv, *qintv_ = qintv;
*soff_ = soff, *qoff_ = qoff;
return max_acnt;
}
/**********************
* Graph augmentation *
**********************/
void mg_ggsimple(void *km, const mg_ggopt_t *opt, gfa_t *g, int32_t n_seq, const mg_bseq1_t *seq, mg_gchains_t *const* gcs)
{
int32_t t, i, j, *soff, *qoff, max_acnt, *sc, m_ovlp = 0, *ovlp = 0, n_ins, m_ins, n_inv;
int32_t l_pseq, m_pseq;
uint64_t *meta;
mg_intv_t *sintv, *qintv;
double a_dens;
gfa_ins_t *ins;
char *pseq;
max_acnt = mg_gc_index(km, opt->min_mapq, opt->min_map_len, opt->min_depth_len, g, n_seq, gcs, &a_dens, &soff, &qoff, &sintv, &qintv);
if (max_acnt == 0) return;
// extract poorly regions
m_pseq = l_pseq = 0, pseq = 0;
m_ins = n_ins = 0, ins = 0;
n_inv = 0;
KMALLOC(km, sc, max_acnt);
KMALLOC(km, meta, max_acnt);
for (t = 0; t < n_seq; ++t) {
const mg_gchains_t *gt = gcs[t];
for (i = 0; i < gt->n_gc; ++i) {
const mg_gchain_t *gc = >->gc[i];
int32_t off_a, off_l, n_ss, far_q;
mg_msseg_t *ss;
if (gc->id != gc->parent) continue;
if (gc->blen < opt->min_map_len || gc->mapq < opt->min_mapq) continue;
assert(gc->cnt > 0);
// fill sc[]. This part achieves a similar goal to the one in mg_gchain_extra(). It makes more assumptions, but is logically simpler.
off_l = gc->off;
off_a = gt->lc[off_l].off + 1;
far_q = 0;
for (j = 1; j < gc->n_anchor; ++j, ++off_a) {
const mg128_t *q = >->a[off_a - 1], *p = >->a[off_a];
const mg_llchain_t *lc = >->lc[off_l];
int32_t s, ed = -1, off_l0 = off_l, pd, qd = (int32_t)p->y - (int32_t)q->y, c = (int32_t)(p->x>>32) - (int32_t)(q->x>>32) - 1;
if ((int32_t)q->y > far_q) far_q = (int32_t)q->y; // far_q keeps the rightmost query position seen so far
if (off_a == lc->off + lc->cnt) { // we are at the end of the current lchain
pd = g->seg[lc->v>>1].len - (int32_t)q->x - 1;
for (++off_l; off_l < gc->off + gc->cnt && gt->lc[off_l].cnt == 0; ++off_l)
pd += g->seg[gt->lc[off_l].v>>1].len;
assert(off_l < gc->off + gc->cnt);
if (gt->lc[off_l].ed >= 0) ed = gt->lc[off_l].ed;
pd += (int32_t)p->x + 1;
} else pd = (int32_t)p->x - (int32_t)q->x;
if ((opt->flag&MG_G_NO_QOVLP) && (int32_t)p->y < far_q) s = 1; // query overlap
else if (pd == qd && c == 0) s = -opt->match_pen;
else if (ed >= 0) {
int32_t min_d = pd < qd? pd : qd;
double t = 1. / (1.01 - opt->ggs_max_iden);
if (t > 10.) t = 10.;
s = (int32_t)(ed * t - min_d);
} else if (pd > qd) {
double x = qd * a_dens;
x = x > c? x : c;
s = (int32_t)(x + (pd - qd) * a_dens + .499);
} else {
s = (int32_t)(qd * a_dens + .499);
s = s > c? s : c;
}
sc[j - 1] = s;
meta[j-1] = (uint64_t)pd<<32 | off_l0;
}
// get regions to insert
ss = mg_mss_all(0, gc->n_anchor - 1, sc, 10, 0, &n_ss);
off_a = gt->lc[gc->off].off;
for (j = 0; j < n_ss; ++j) {
const mg128_t *p, *q;
int32_t st, en, ls, le, span, pd, k, n_ovlp, min_len, is_inv = 0;
gfa_ins_t I;
// find the initial positions
min_len = opt->ggs_min_end_cnt > 0? opt->ggs_min_end_cnt : 0;
if (min_len < ss[j].sc * opt->ggs_min_end_frac) min_len = ss[j].sc * opt->ggs_min_end_frac;
if (ss[j].st <= min_len || ss[j].en >= gc->n_anchor - 1 - min_len) continue; // too close to ends
st = ss[j].st, en = ss[j].en;
q = >->a[off_a + st];
p = >->a[off_a + en];
span = p->y>>32&0xff;
I.ctg = t;
ls = (int32_t)meta[st], le = (int32_t)meta[en]; // first and last lchain; CLOSED interval
assert(ls <= le);
I.v[0] = gt->lc[ls].v;
I.v[1] = gt->lc[le].v;
I.voff[0] = (int32_t)q->x + 1 - span;
I.voff[1] = (int32_t)p->x + 1;
I.coff[0] = (int32_t)q->y + 1 - span;
I.coff[1] = (int32_t)p->y + 1;
assert(I.voff[0] <= g->seg[I.v[0]>>1].len);
assert(I.voff[1] <= g->seg[I.v[1]>>1].len);
for (k = st, pd = span; k < en; ++k)
pd += meta[k]>>32;
if (I.coff[0] > I.coff[1]) {
if (mg_verbose >= 2 && pd + (I.coff[0] - I.coff[1]) >= opt->min_var_len)
fprintf(stderr, "[W::%s] query overlap on gchain %d: [%c%s:%d,%c%s:%d|%d] <=> %s:[%d,%d|%d]\n", __func__, t, "><"[I.v[0]&1], g->seg[I.v[0]>>1].name, I.voff[0], "><"[I.v[1]&1], g->seg[I.v[1]>>1].name, I.voff[1], pd, seq[t].name, I.coff[0], I.coff[1], I.coff[1] - I.coff[0]);
continue; // such overlap can't be properly resolved
}
pd -= gfa_ins_adj(g, opt->ggs_shrink_pen, &I, seq[t].seq);
min_len = pd > I.coff[1] - I.coff[0]? pd : I.coff[1] - I.coff[0];
if (I.coff[0] <= min_len || I.coff[1] >= seq[t].l_seq - min_len) continue; // test if the event is close to ends again
// filtering
if (I.coff[1] - I.coff[0] < opt->min_var_len && pd < opt->min_var_len)
continue;
for (k = I.coff[0]; k < I.coff[1]; ++k) { // test ambiguous bases
int c = seq[t].seq[k];
if (c == 'n' || c == 'N') break;
}
if (k != I.coff[1]) continue; // no ambiguous bases on the insert
n_ovlp = mg_intv_overlap(km, qoff[t+1] - qoff[t], &qintv[qoff[t]], I.coff[0], I.coff[1], &ovlp, &m_ovlp); // test overlapping on the query
if (n_ovlp == 0) fprintf(stderr, "[W::%s] query interval %s:%d-%d is not covered\n", __func__, seq[t].name, I.coff[0], I.coff[1]);
if (n_ovlp != 1) continue;
for (k = ls; k <= le; ++k) { // find other mappings overlapping with the insert on the graph
uint32_t v = gt->lc[k].v, len = g->seg[v>>1].len;
int32_t s = 0, e = len, tmp;
if (k == ls) s = (int32_t)gt->a[off_a+st].x + 1 - (int32_t)(gt->a[off_a+st].y>>32&0xff);
if (k == le) e = (int32_t)gt->a[off_a+en].x + 1;
if (v&1) tmp = s, s = len - e, e = len - tmp;
n_ovlp = mg_intv_overlap(km, soff[(v>>1)+1] - soff[v>>1], &sintv[soff[v>>1]], s, e, &ovlp, &m_ovlp);
if (n_ovlp == 0) fprintf(stderr, "[W::%s] graph interval %s:%d-%d is not covered by %s:%d-%d\n", __func__, g->seg[v>>1].name, s, e, seq[t].name, I.coff[0], I.coff[1]); // this should be an assert()
if (n_ovlp != 1) break;
}
if (k <= le) continue;
if (pd - (I.coff[1] - I.coff[0]) < opt->min_var_len && (I.coff[1] - I.coff[0]) - pd < opt->min_var_len) { // if length difference > min_var_len, just insert
int32_t qd = I.coff[1] - I.coff[0], mlen, blen, score;
l_pseq = mg_path2seq(km, g, gt, ls, le, I.voff, &pseq, &m_pseq);
score = mg_wfa_cmp(km, l_pseq, pseq, qd, &seq[t].seq[I.coff[0]], 5000, &mlen, &blen);
if (score > 0) {
if (mlen > blen * opt->ggs_max_iden) continue; // make sure k-mer identity is small enough
if (blen - mlen < opt->min_var_len * opt->ggs_max_iden) continue;
} else if (!(opt->flag & MG_G_NO_INV)) {
mg_revcomp_seq(l_pseq, pseq);
score = mg_wfa_cmp(km, l_pseq, pseq, qd, &seq[t].seq[I.coff[0]], 5000, &mlen, &blen);
if (score > 0 && mlen > blen * opt->ggs_min_inv_iden) is_inv = 1;
}
}
if (mg_dbg_flag & MG_DBG_INSERT) {
int32_t mlen, blen, score, qd = I.coff[1] - I.coff[0];
l_pseq = mg_path2seq(km, g, gt, ls, le, I.voff, &pseq, &m_pseq);
fprintf(stderr, "IN\t[%c%s:%d,%c%s:%d|%d] <=> %s:[%d,%d|%d] inv:%d\n", "><"[I.v[0]&1], g->seg[I.v[0]>>1].name, I.voff[0], "><"[I.v[1]&1], g->seg[I.v[1]>>1].name, I.voff[1], pd, seq[t].name, I.coff[0], I.coff[1], I.coff[1] - I.coff[0], is_inv);
fprintf(stderr, "IP\t%s\nIQ\t", pseq);
fwrite(&seq[t].seq[I.coff[0]], 1, qd, stderr);
if (pd - qd < opt->min_var_len && qd - pd < opt->min_var_len) {
score = mg_wfa_cmp(km, l_pseq, pseq, qd, &seq[t].seq[I.coff[0]], 5000, &mlen, &blen);
} else score = -1, mlen = 0, blen = pd > qd? pd : qd;
fprintf(stderr, "\nIS\t%d==%d\tnwcmp:%d\tmlen:%d\tblen:%d\n", pd, l_pseq, score, mlen, blen);
}
if (is_inv && false) { // turn one inversion to two events
gfa_ins_t I_inv[2];
I_inv[0].ctg = I_inv[1].ctg = I.ctg;
// the first event
I_inv[0].coff[0] = I_inv[0].coff[1] = I.coff[0];
I_inv[0].v[0] = I.v[0];
I_inv[0].voff[0] = I.voff[0];
I_inv[0].v[1] = I.v[1]^1;
I_inv[0].voff[1] = g->seg[I.v[1]>>1].len - I.voff[1];
// the second event
I_inv[1].coff[0] = I_inv[1].coff[1] = I.coff[1];
I_inv[1].v[0] = I.v[0]^1;
I_inv[1].voff[0] = g->seg[I.v[0]>>1].len - I.voff[0];
I_inv[1].v[1] = I.v[1];
I_inv[1].voff[1] = I.voff[1];
// insert
if (n_ins == m_ins) KEXPAND(km, ins, m_ins);
ins[n_ins++] = I_inv[0];
if (n_ins == m_ins) KEXPAND(km, ins, m_ins);
ins[n_ins++] = I_inv[1];
++n_inv;
} else {
if (n_ins == m_ins) KEXPAND(km, ins, m_ins);
ins[n_ins++] = I;
}
}
kfree(0, ss);
}
}
kfree(km, pseq);
kfree(km, ovlp);
kfree(km, sc);
kfree(km, meta);
kfree(km, soff); kfree(km, qoff);
kfree(km, sintv); kfree(km, qintv);
if (n_ins > 0) {
char **names, **seqs;
KMALLOC(km, names, n_seq);
KMALLOC(km, seqs, n_seq);
for (i = 0; i < n_seq; ++i)
names[i] = seq[i].name, seqs[i] = seq[i].seq;
n_ins = gfa_ins_filter(g, n_ins, ins);
gfa_augment(g, n_ins, ins, n_seq, (const char*const*)names, (const char*const*)seqs);
kfree(km, ins);
kfree(km, names);
kfree(km, seqs);
}
if (mg_verbose >= 3)
fprintf(stderr, "[M::%s::%.3f*%.2f] inserted %d events, including %d inversions\n", __func__,
realtime() - mg_realtime0, cputime() / (realtime() - mg_realtime0), n_ins, n_inv);
}
/**********************
* Graph augmentation *
**********************/
typedef struct {
int32_t lc, vo, qo, po, len, op, sc;
} ed_intv_t;
static int32_t gg_count_intv(const gfa_t *g, const mg_gchains_t *gt, int32_t i)
{
const mg_gchain_t *gc = >->gc[i];
int32_t j, l = gc->off, x = gc->ps, n = 0;
assert(gc->p);
for (j = 0; j < gc->p->n_cigar; ++j) {
int32_t op = gc->p->cigar[j]&0xf, len = gc->p->cigar[j]>>4, rl = len;
assert(op == 1 || op == 2 || op == 7 || op == 8);
if (op == 2 || op == 7 || op == 8) {
while (x + rl > g->seg[gt->lc[l].v>>1].len) {
rl -= g->seg[gt->lc[l].v>>1].len - x;
++n, ++l, x = 0;
}
x += rl;
}
++n;
}
return n;
}
static void gg_write_intv(const gfa_t *g, const mg_gchains_t *gt, int32_t i, ed_intv_t *intv)
{
const mg_gchain_t *gc = >->gc[i];
int32_t j, l = gc->off, pl = 0, x = gc->ps, y = gc->qs, n = 0;
ed_intv_t *p;
assert(gc->p);
for (j = 0; j < gc->p->n_cigar; ++j) {
int32_t op = gc->p->cigar[j]&0xf, len = gc->p->cigar[j]>>4, rl = len;
if (op == 2 || op == 7 || op == 8) {
while (x + rl > g->seg[gt->lc[l].v>>1].len) {
p = &intv[n++];
p->lc = l, p->vo = x, p->qo = y, p->po = pl, p->len = g->seg[gt->lc[l].v>>1].len - x, p->op = op;
if (op == 7 || op == 8) y += p->len;
rl -= p->len, pl += p->len, ++l, x = 0;
}
}
p = &intv[n++];
p->lc = l, p->vo = x, p->qo = y, p->po = pl, p->len = rl, p->op = op;
if (op == 7 || op == 8) x += rl, y += rl, pl += rl;
else if (op == 1) y += rl;
else if (op == 2) x += rl, pl += rl;
}
assert(y == gc->qe && pl == gc->pe - gc->ps);
}
static void gg_score_intv(int32_t n_intv, ed_intv_t *intv)
{
int32_t j;
for (j = 0; j < n_intv; ++j) {
int32_t s;
if (intv[j].op == 7)
s = intv[j].len >= 10? -intv[j].len : 0;
else s = intv[j].len;
intv[j].sc = s;
}
}
static void gg_merge_seg(const ed_intv_t *intv, int32_t n_ss, mg_msseg_t *ss)
{
int32_t j0, j;
for (j0 = 0, j = 1; j < n_ss; ++j) {
mg_msseg_t *s0 = &ss[j0], *s1 = &ss[j];
int32_t i, mid = 0;
for (i = s0->en + 1; i < s1->st; ++i)
mid += intv[i].sc;
//fprintf(stderr, "XX\t%d\t%d\t%d\t%d\t%d\t%d\n", j, s0->sc, mid, s1->sc, s0->en+1, s1->st);
if (-mid < s0->sc * 0.2 && -mid < s1->sc * 0.2) { // FIXME: mid is sometimes 0
s0->en = s1->en, s0->sc += s1->sc + mid;
s1->st = s1->en, s1->sc = 0;
} else j0 = j;
}
}
void mg_ggsimple_cigar(void *km, const mg_ggopt_t *opt, gfa_t *g, int32_t n_seq, const mg_bseq1_t *seq, mg_gchains_t *const* gcs)
{
int32_t t, i, *soff, *qoff, max_acnt, m_ovlp = 0, *ovlp = 0, n_ins = 0, m_ins, n_inv;
int32_t l_pseq, m_pseq;
mg_intv_t *sintv, *qintv;
double a_dens;
gfa_ins_t *ins;
char *pseq;
max_acnt = mg_gc_index(km, opt->min_mapq, opt->min_map_len, opt->min_depth_len, g, n_seq, gcs, &a_dens, &soff, &qoff, &sintv, &qintv);
if (max_acnt == 0) return;
// extract poorly regions
m_pseq = l_pseq = 0, pseq = 0;
m_ins = n_ins = 0, ins = 0;
n_inv = 0;
for (t = 0; t < n_seq; ++t) {
const mg_gchains_t *gt = gcs[t];
for (i = 0; i < gt->n_gc; ++i) {
const mg_gchain_t *gc = >->gc[i];
int32_t j, n_ss, n_intv, *sc;
ed_intv_t *intv;
mg_msseg_t *ss;
if (gc->id != gc->parent) continue;
if (gc->p == 0 || gc->blen < opt->min_map_len || gc->mapq < opt->min_mapq) continue;
assert(gc->cnt > 0);
n_intv = gg_count_intv(g, gt, i);
KCALLOC(km, intv, n_intv);
gg_write_intv(g, gt, i, intv);
gg_score_intv(n_intv, intv);
KCALLOC(km, sc, n_intv);
for (j = 0; j < n_intv; ++j) sc[j] = intv[j].sc;
ss = mg_mss_all(0, n_intv, sc, opt->min_var_len, 2 * opt->min_var_len, &n_ss);
gg_merge_seg(intv, n_ss, ss);
// get regions to insert
for (j = 0; j < n_ss; ++j) {
int32_t st, en, pd, k, n_ovlp, min_len, is_inv = 0, ls, le;
gfa_ins_t I;
ed_intv_t *is, *ie;
// find the initial positions
st = ss[j].st, en = ss[j].en; // this is a CLOSED interval
if (st == en) continue;
is = &intv[st], ie = &intv[en - 1];
assert(is->op != 7 && ie->op != 7);
ls = is->lc, le = ie->lc;
I.ctg = t;
I.v[0] = gt->lc[ls].v;
I.v[1] = gt->lc[le].v;
I.voff[0] = is->vo;
I.voff[1] = ie->vo + (ie->op != 1? ie->len : 0);
I.coff[0] = is->qo;
I.coff[1] = ie->qo + (ie->op != 2? ie->len : 0);
assert(I.voff[0] <= g->seg[I.v[0]>>1].len);
assert(I.voff[1] <= g->seg[I.v[1]>>1].len);
if (I.voff[0] == 0) { // if an insert starts at pos 0, make it start at the end of the previous vertex in the chain
assert(ls - 1 >= gc->off);
I.v[0] = gt->lc[--ls].v;
I.voff[0] = g->seg[I.v[0]>>1].len;
}
if (I.voff[1] == g->seg[I.v[1]>>1].len) { // if an insert ends at the end of the vertex, make it end at the beginning of the next vertex
assert(le + 1 < gc->off + gc->cnt);
I.v[1] = gt->lc[++le].v;
I.voff[1] = 0;
}
pd = ie->po + (ie->op != 1? ie->len : 0) - is->po;
pd -= gfa_ins_adj(g, opt->ggs_shrink_pen, &I, seq[t].seq);
min_len = pd > I.coff[1] - I.coff[0]? pd : I.coff[1] - I.coff[0];
if (I.coff[0] <= min_len || I.coff[1] >= seq[t].l_seq - min_len) continue; // test if the event is close to ends again
// filtering
if (I.coff[1] - I.coff[0] < opt->min_var_len && pd < opt->min_var_len)
continue;
for (k = I.coff[0]; k < I.coff[1]; ++k) { // test ambiguous bases
int c = seq[t].seq[k];
if (c == 'n' || c == 'N') break;
}
if (k != I.coff[1]) continue; // no ambiguous bases on the insert
n_ovlp = mg_intv_overlap(km, qoff[t+1] - qoff[t], &qintv[qoff[t]], I.coff[0], I.coff[1], &ovlp, &m_ovlp); // test overlapping on the query
if (n_ovlp == 0) fprintf(stderr, "[W::%s] query interval %s:%d-%d is not covered\n", __func__, seq[t].name, I.coff[0], I.coff[1]);
if (n_ovlp != 1) continue;
for (k = is->lc; k <= ie->lc; ++k) { // find other mappings overlapping with the insert on the graph
uint32_t v = gt->lc[k].v, len = g->seg[v>>1].len;
int32_t s = 0, e = len, tmp;
if (k == is->lc) s = is->vo;
if (k == ie->lc) e = ie->vo + (ie->op != 1? ie->len : 0);
if (v&1) tmp = s, s = len - e, e = len - tmp;
if (s == e) {
if (s == 0) ++e;
else --s;
}
n_ovlp = mg_intv_overlap(km, soff[(v>>1)+1] - soff[v>>1], &sintv[soff[v>>1]], s, e, &ovlp, &m_ovlp);
if (n_ovlp == 0) fprintf(stderr, "[W::%s] graph interval %c%s:%d-%d is not covered by %s:%d-%d\n", __func__, "><"[v&1], g->seg[v>>1].name, s, e, seq[t].name, I.coff[0], I.coff[1]); // this should be an assert()
if (n_ovlp != 1) break;
}
if (k <= ie->lc) continue;
if (pd - (I.coff[1] - I.coff[0]) < opt->min_var_len && (I.coff[1] - I.coff[0]) - pd < opt->min_var_len) { // if length difference > min_var_len, just insert
int32_t qd = I.coff[1] - I.coff[0], mlen, blen, score = 0;
l_pseq = mg_path2seq(km, g, gt, ls, le, I.voff, &pseq, &m_pseq);
score = mg_wfa_cmp(km, l_pseq, pseq, qd, &seq[t].seq[I.coff[0]], 5000, &mlen, &blen);
if (score > 0) {
if (mlen > blen * opt->ggs_max_iden) continue; // make sure k-mer identity is small enough
if (blen - mlen < opt->min_var_len * opt->ggs_max_iden) continue;
} else if (!(opt->flag & MG_G_NO_INV)) {
mg_revcomp_seq(l_pseq, pseq);
score = mg_wfa_cmp(km, l_pseq, pseq, qd, &seq[t].seq[I.coff[0]], 5000, &mlen, &blen);
if (score > 0 && mlen > blen * opt->ggs_min_inv_iden) is_inv = 1;
}
}
if (mg_dbg_flag & MG_DBG_INSERT) {
int32_t mlen, blen, score, qd = I.coff[1] - I.coff[0];
l_pseq = mg_path2seq(km, g, gt, ls, le, I.voff, &pseq, &m_pseq);
fprintf(stderr, "IN\t[%c%s:%d,%c%s:%d|%d] <=> %s:[%d,%d|%d] inv:%d\n", "><"[I.v[0]&1], g->seg[I.v[0]>>1].name, I.voff[0], "><"[I.v[1]&1], g->seg[I.v[1]>>1].name, I.voff[1], pd, seq[t].name, I.coff[0], I.coff[1], I.coff[1] - I.coff[0], is_inv);
fprintf(stderr, "IP\t%s\nIQ\t", pseq);
fwrite(&seq[t].seq[I.coff[0]], 1, qd, stderr);
if (pd - qd < opt->min_var_len && qd - pd < opt->min_var_len) {
score = mg_wfa_cmp(km, l_pseq, pseq, qd, &seq[t].seq[I.coff[0]], 5000, &mlen, &blen);
} else score = -1, mlen = 0, blen = pd > qd? pd : qd;
fprintf(stderr, "\nIS\t%d==%d\tnwcmp:%d\tmlen:%d\tblen:%d\n", pd, l_pseq, score, mlen, blen);
//if (I.voff[0] == 2305301) { for (k = st; k < en; ++k) fprintf(stderr, "%d%c", intv[k].len, "MIDNSHP=XB"[intv[k].op]); fprintf(stderr, "\n"); }
}
if (is_inv && false) { // turn one inversion to two events
gfa_ins_t I_inv[2];
I_inv[0].ctg = I_inv[1].ctg = I.ctg;
// the first event
I_inv[0].coff[0] = I_inv[0].coff[1] = I.coff[0];
I_inv[0].v[0] = I.v[0];
I_inv[0].voff[0] = I.voff[0];
I_inv[0].v[1] = I.v[1]^1;
I_inv[0].voff[1] = g->seg[I.v[1]>>1].len - I.voff[1];
// the second event
I_inv[1].coff[0] = I_inv[1].coff[1] = I.coff[1];
I_inv[1].v[0] = I.v[0]^1;
I_inv[1].voff[0] = g->seg[I.v[0]>>1].len - I.voff[0];
I_inv[1].v[1] = I.v[1];
I_inv[1].voff[1] = I.voff[1];
// insert
if (n_ins == m_ins) KEXPAND(km, ins, m_ins);
ins[n_ins++] = I_inv[0];
if (n_ins == m_ins) KEXPAND(km, ins, m_ins);
ins[n_ins++] = I_inv[1];
++n_inv;
} else {
if (n_ins == m_ins) KEXPAND(km, ins, m_ins);
ins[n_ins++] = I;
}
}
kfree(0, ss); // this is allocated from malloc() inside mg_mss_all()
kfree(km, intv);
kfree(km, sc);
}
}
kfree(km, pseq);
kfree(km, ovlp);
kfree(km, soff); kfree(km, qoff);
kfree(km, sintv); kfree(km, qintv);
if (n_ins > 0) {
char **names, **seqs;
KMALLOC(km, names, n_seq);
KMALLOC(km, seqs, n_seq);
for (i = 0; i < n_seq; ++i)
names[i] = seq[i].name, seqs[i] = seq[i].seq;
n_ins = gfa_ins_filter(g, n_ins, ins);
gfa_augment(g, n_ins, ins, n_seq, (const char*const*)names, (const char*const*)seqs);
kfree(km, ins);
kfree(km, names);
kfree(km, seqs);
}
if (mg_verbose >= 3)
fprintf(stderr, "[M::%s::%.3f*%.2f] inserted %d events, including %d inversions\n", __func__,
realtime() - mg_realtime0, cputime() / (realtime() - mg_realtime0), n_ins, n_inv);
}