forked from microsoft/QuantumKatas
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Tests.qs
374 lines (298 loc) · 14.3 KB
/
Tests.qs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
// Copyright (c) Microsoft Corporation. All rights reserved.
// Licensed under the MIT license.
//////////////////////////////////////////////////////////////////////
// This file contains testing harness for all tasks.
// You should not modify anything in this file.
// The tasks themselves can be found in Tasks.qs file.
//////////////////////////////////////////////////////////////////////
namespace Quantum.Kata.GroversAlgorithm {
open Microsoft.Quantum.Arrays;
open Microsoft.Quantum.Intrinsic;
open Microsoft.Quantum.Canon;
open Microsoft.Quantum.Diagnostics;
open Microsoft.Quantum.Convert;
open Microsoft.Quantum.Math;
// ------------------------------------------------------
// helper wrapper to represent oracle operation on input and output registers as an operation on an array of qubits
operation QubitArrayWrapperOperation (op : ((Qubit[], Qubit) => Unit is Adj), qs : Qubit[]) : Unit is Adj {
op(Most(qs), Tail(qs));
}
// ------------------------------------------------------
// helper wrapper to test for operation equality on various register sizes
operation AssertRegisterOperationsEqual (testOp : (Qubit[] => Unit), refOp : (Qubit[] => Unit is Adj)) : Unit {
for (n in 2 .. 10) {
AssertOperationsEqualReferenced(n, testOp, refOp);
}
}
//////////////////////////////////////////////////////////////////
// Part I. Oracles for SAT problems
//////////////////////////////////////////////////////////////////
operation AssertOracleImplementsFunction (N : Int, oracle : ((Qubit[], Qubit) => Unit), f : (Bool[] -> Bool)) : Unit {
let size = 1 <<< N;
using ((qs, target) = (Qubit[N], Qubit())) {
for (k in 0 .. size - 1) {
// Prepare k-th bit vector
let binary = IntAsBoolArray(k, N);
//Message($"{k}/{N} = {binary}");
// binary is little-endian notation, so the second vector tried has qubit 0 in state 1 and the rest in state 0
ApplyPauliFromBitString(PauliX, true, binary, qs);
// Apply the operation
oracle(qs, target);
// Check that the result is what we'd expect to measure
let val = f(binary);
AssertQubit(val ? One | Zero, target);
Reset(target);
// Check that the query qubits are still in the same state
ApplyPauliFromBitString(PauliX, true, binary, qs);
AssertAllZero(qs);
}
}
}
// ------------------------------------------------------
function And (args : Bool[]) : Bool {
return args[0] and args[1];
}
operation T11_Oracle_And_Test () : Unit {
AssertOracleImplementsFunction(2, Oracle_And, And);
let testOp = QubitArrayWrapperOperation(Oracle_And, _);
let refOp = QubitArrayWrapperOperation(Oracle_And_Reference, _);
AssertOperationsEqualReferenced(3, testOp, refOp);
}
// ------------------------------------------------------
function Or (args : Bool[]) : Bool {
return args[0] or args[1];
}
operation T12_Oracle_Or_Test () : Unit {
AssertOracleImplementsFunction(2, Oracle_Or, Or);
let testOp = QubitArrayWrapperOperation(Oracle_Or, _);
let refOp = QubitArrayWrapperOperation(Oracle_Or_Reference, _);
AssertOperationsEqualReferenced(3, testOp, refOp);
}
// ------------------------------------------------------
function Xor (args : Bool[]) : Bool {
return args[0] != args[1];
}
operation T13_Oracle_Xor_Test () : Unit {
AssertOracleImplementsFunction(2, Oracle_Xor, Xor);
let testOp = QubitArrayWrapperOperation(Oracle_Xor, _);
let refOp = QubitArrayWrapperOperation(Oracle_Xor_Reference, _);
AssertOperationsEqualReferenced(3, testOp, refOp);
}
// ------------------------------------------------------
function AlternatingBits (args : Bool[]) : Bool {
for (i in 0..Length(args)-2) {
if (args[i] == args[i+1]) {
return false;
}
}
return true;
}
operation T14_Oracle_AlternatingBits_Test () : Unit {
let testOp = QubitArrayWrapperOperation(Oracle_AlternatingBits, _);
let refOp = QubitArrayWrapperOperation(Oracle_AlternatingBits_Reference, _);
for (n in 2 .. 5) {
AssertOracleImplementsFunction(n, Oracle_AlternatingBits, AlternatingBits);
AssertOperationsEqualReferenced(n + 1, testOp, refOp);
}
}
// ------------------------------------------------------
// A set of helper functions to pretty-print SAT formulas
function SATVariableAsString (var : (Int, Bool)) : String {
let (index, isTrue) = var;
return (isTrue ? "" | "¬") + $"x{index}";
}
function SATClauseAsString (clause : (Int, Bool)[]) : String {
mutable ret = SATVariableAsString(clause[0]);
for (ind in 1 .. Length(clause) - 1) {
set ret = ret + " ∨ " + SATVariableAsString(clause[ind]);
}
return ret;
}
function SATInstanceAsString (instance : (Int, Bool)[][]) : String {
mutable ret = "(" + SATClauseAsString(instance[0]) + ")";
for (ind in 1 .. Length(instance) - 1) {
set ret = ret + " ∧ (" + SATClauseAsString(instance[ind]) + ")";
}
return ret;
}
// ------------------------------------------------------
// Evaluate one clause of the SAT formula
function F_SATClause (args : Bool[], clause : (Int, Bool)[]) : Bool {
for ((index, isTrue) in clause) {
if (isTrue == args[index]) {
// one true literal is sufficient for the clause to be true
return true;
}
}
// none of the literals is true - the whole clause is false
return false;
}
operation Generate_SAT_Clause (nVar : Int, nTerms : Int) : (Int, Bool)[] {
mutable nVarInClause = (nTerms > 0) ? nTerms | (RandomInt(4) + 1);
if (nVarInClause > nVar) {
set nVarInClause = nVar;
}
mutable clause = new (Int, Bool)[nVarInClause];
mutable usedVariables = new Bool[nVar];
// Make sure variables in the clause are distinct
for (k in 0 .. nVarInClause - 1) {
mutable nextInd = -1;
repeat {
set nextInd = RandomInt(nVar);
} until (not usedVariables[nextInd])
fixup {}
set clause w/= k <- (nextInd, RandomInt(2) > 0);
set usedVariables w/= nextInd <- true;
}
return clause;
}
operation T15_Oracle_SATClause_Test () : Unit {
for (i in 1..10) {
let nVar = RandomInt(5) + 3;
let clause = Generate_SAT_Clause(nVar, i);
Message($"Testing SAT clause instance {SATClauseAsString(clause)}...");
AssertOracleImplementsFunction(nVar, Oracle_SATClause(_, _, clause), F_SATClause(_, clause));
AssertOperationsEqualReferenced(nVar + 1,
QubitArrayWrapperOperation(Oracle_SATClause(_, _, clause), _),
QubitArrayWrapperOperation(Oracle_SATClause_Reference(_, _, clause), _)
);
}
}
// ------------------------------------------------------
function F_SAT (args : Bool[], problem : (Int, Bool)[][]) : Bool {
for (clause in problem) {
// One clause can invalidate the whole formula
if (not F_SATClause(args, clause)) {
return false;
}
}
return true;
}
operation Generate_SAT_Instance (nTerms : Int) : (Int, (Int, Bool)[][]) {
let nVar = RandomInt(5) + 3;
let nClause = RandomInt(2 * nVar) + 1;
mutable problem = new (Int, Bool)[][nClause];
for (j in 0..nClause-1) {
set problem w/= j <- Generate_SAT_Clause(nVar, nTerms);
}
return (nVar, problem);
}
operation Run2SATTests (oracle : ((Qubit[], Qubit, (Int, Bool)[][]) => Unit is Adj)) : Unit {
// Cross-tests:
// OR oracle
Message($"Testing 2-SAT instance (2, {SATInstanceAsString([[(0, true), (1, true)]])})...");
AssertOperationsEqualReferenced(3,
QubitArrayWrapperOperation(oracle(_, _, [[(0, true), (1, true)]]), _),
QubitArrayWrapperOperation(Oracle_Or_Reference, _));
// XOR oracle
Message($"Testing 2-SAT instance (2, {SATInstanceAsString([[(0, true), (1, true)], [(1, false), (0, false)]])})...");
AssertOperationsEqualReferenced(3,
QubitArrayWrapperOperation(oracle(_, _, [[(0, true), (1, true)], [(1, false), (0, false)]]), _),
QubitArrayWrapperOperation(Oracle_Xor_Reference, _));
// AlternatingBits oracle for 3 qubits
Message($"Testing 2-SAT instance (3, {SATInstanceAsString([[(1, false), (2, false)], [(0, true), (1, true)], [(1, false), (0, false)], [(2, true), (1, true)]])})...");
AssertOperationsEqualReferenced(4,
QubitArrayWrapperOperation(oracle(_, _, [[(1, false), (2, false)], [(0, true), (1, true)], [(1, false), (0, false)], [(2, true), (1, true)]]), _),
QubitArrayWrapperOperation(Oracle_AlternatingBits_Reference, _));
// Standalone tests
for (i in 1..8) {
let (nVar, problem) = Generate_SAT_Instance(2);
Message($"Testing 2-SAT instance ({nVar}, {SATInstanceAsString(problem)})...");
AssertOracleImplementsFunction(nVar, oracle(_, _, problem), F_SAT(_, problem));
AssertOperationsEqualReferenced(nVar + 1,
QubitArrayWrapperOperation(oracle(_, _, problem), _),
QubitArrayWrapperOperation(Oracle_SAT_Reference(_, _, problem), _)
);
}
}
// ------------------------------------------------------
operation T16_Oracle_SAT_Test () : Unit {
// General SAT oracle should be able to implement all 2SAT problems
Run2SATTests(Oracle_SAT);
// General SAT instances
for (i in 1..5) {
let (nVar, problem) = Generate_SAT_Instance(-1);
Message($"Testing k-SAT instance ({nVar}, {SATInstanceAsString(problem)})...");
AssertOracleImplementsFunction(nVar, Oracle_SAT(_, _, problem), F_SAT(_, problem));
AssertOperationsEqualReferenced(nVar + 1,
QubitArrayWrapperOperation(Oracle_SAT(_, _, problem), _),
QubitArrayWrapperOperation(Oracle_SAT_Reference(_, _, problem), _)
);
}
}
//////////////////////////////////////////////////////////////////
// Part II. Oracles for exactly-1 3-SAT problem
//////////////////////////////////////////////////////////////////
// ------------------------------------------------------
function F_Exactly1One (args : Bool[]) : Bool {
mutable nOnes = 0;
for (element in args) {
if (element) {
set nOnes += 1;
}
}
return nOnes == 1;
}
operation T21_Oracle_Exactly1One_Test () : Unit {
AssertOracleImplementsFunction(3, Oracle_Exactly1One, F_Exactly1One);
let testOp = QubitArrayWrapperOperation(Oracle_Exactly1One, _);
let refOp = QubitArrayWrapperOperation(Oracle_Exactly1One_Reference, _);
AssertOperationsEqualReferenced(4, testOp, refOp);
}
// ------------------------------------------------------
// Evaluate one clause of the SAT formula
function F_Exactly1SATClause (args : Bool[], clause : (Int, Bool)[]) : Bool {
mutable nOnes = 0;
for ((index, isTrue) in clause) {
if (isTrue == args[index]) {
// count the number of true literals
set nOnes += 1;
}
}
return nOnes == 1;
}
function F_Exactly1_SAT (args : Bool[], problem : (Int, Bool)[][]) : Bool {
for (clause in problem) {
// One clause can invalidate the whole formula
if (not F_Exactly1SATClause(args, clause)) {
return false;
}
}
return true;
}
operation T22_Oracle_Exactly1SAT_Test () : Unit {
// General SAT instances
for (i in 1..10) {
let (nVar, problem) = Generate_SAT_Instance(3);
Message($"Testing exactly-1 3-SAT instance ({nVar}, {SATInstanceAsString(problem)})...");
AssertOracleImplementsFunction(nVar, Oracle_Exactly1_3SAT(_, _, problem), F_Exactly1_SAT(_, problem));
AssertOperationsEqualReferenced(nVar + 1,
QubitArrayWrapperOperation(Oracle_Exactly1_3SAT(_, _, problem), _),
QubitArrayWrapperOperation(Oracle_Exactly1_3SAT_Reference(_, _, problem), _)
);
}
}
//////////////////////////////////////////////////////////////////
// Part III. Using Grover's search for problems with multiple solutions
//////////////////////////////////////////////////////////////////
// Run algorithm on one instance of the SAT problem and check that the answer is correct
operation RunGroverOnOneInstance (nVar : Int, problem : (Int, Bool)[][]) : Unit {
let oracle = Oracle_SAT_Reference(_, _, problem);
let answer = UniversalGroversAlgorithm(nVar, oracle);
if (not F_SAT(answer, problem)) {
fail $"Incorrect answer {answer} for {problem}";
}
}
operation T32_UniversalGroversAlgorithm_Test () : Unit {
// AND: 1 solution/4
RunGroverOnOneInstance(2, [[(0, true)], [(1, true)]]);
// XOR: 2 solutions/4
RunGroverOnOneInstance(2, [[(0, true), (1, true)], [(1, false), (0, false)]]);
// OR: 3 solutions/4
RunGroverOnOneInstance(2, [[(0, true), (1, true)]]);
// Alternating bits: 2 solutions/2^4
RunGroverOnOneInstance(4, [[(1, false), (2, false)], [(0, true), (1, true)], [(1, false), (0, false)], [(2, true), (1, true)], [(2, false), (3, false)], [(3, true), (2, true)]]);
// SAT instance: 1/2^6
RunGroverOnOneInstance(6, [[(1, false)], [(0, true), (1, true)], [(2, true), (3, true), (4, true)], [(3, false), (5, false)], [(0, false), (2, false), (5, true)], [(1, true), (3, true), (4, false)], [(1, true), (5, true)]]);
}
}