forked from tinygrad/tinygrad
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathstable_diffusion.py
649 lines (553 loc) · 22.5 KB
/
stable_diffusion.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
# https://arxiv.org/pdf/2112.10752.pdf
# https://github.com/ekagra-ranjan/huggingface-blog/blob/main/stable_diffusion.md
import os
import tempfile
from pathlib import Path
import gzip, argparse, math, re
from functools import lru_cache
from collections import namedtuple
from tqdm import tqdm
from tinygrad.tensor import Tensor
from tinygrad.helpers import dtypes, GlobalCounters
from tinygrad.nn import Conv2d, Linear, GroupNorm, LayerNorm, Embedding
from extra.utils import download_file
from tinygrad.state import torch_load, load_state_dict
class AttnBlock:
def __init__(self, in_channels):
self.norm = GroupNorm(32, in_channels)
self.q = Conv2d(in_channels, in_channels, 1)
self.k = Conv2d(in_channels, in_channels, 1)
self.v = Conv2d(in_channels, in_channels, 1)
self.proj_out = Conv2d(in_channels, in_channels, 1)
# copied from AttnBlock in ldm repo
def __call__(self, x):
h_ = self.norm(x)
q,k,v = self.q(h_), self.k(h_), self.v(h_)
# compute attention
b,c,h,w = q.shape
q,k,v = [x.reshape(b,c,h*w).transpose(1,2) for x in (q,k,v)]
h_ = Tensor.scaled_dot_product_attention(q,k,v).transpose(1,2).reshape(b,c,h,w)
return x + self.proj_out(h_)
class ResnetBlock:
def __init__(self, in_channels, out_channels=None):
self.norm1 = GroupNorm(32, in_channels)
self.conv1 = Conv2d(in_channels, out_channels, 3, padding=1)
self.norm2 = GroupNorm(32, out_channels)
self.conv2 = Conv2d(out_channels, out_channels, 3, padding=1)
self.nin_shortcut = Conv2d(in_channels, out_channels, 1) if in_channels != out_channels else lambda x: x
def __call__(self, x):
h = self.conv1(self.norm1(x).swish())
h = self.conv2(self.norm2(h).swish())
return self.nin_shortcut(x) + h
class Mid:
def __init__(self, block_in):
self.block_1 = ResnetBlock(block_in, block_in)
self.attn_1 = AttnBlock(block_in)
self.block_2 = ResnetBlock(block_in, block_in)
def __call__(self, x):
return x.sequential([self.block_1, self.attn_1, self.block_2])
class Decoder:
def __init__(self):
sz = [(128, 256), (256, 512), (512, 512), (512, 512)]
self.conv_in = Conv2d(4,512,3, padding=1)
self.mid = Mid(512)
arr = []
for i,s in enumerate(sz):
arr.append({"block":
[ResnetBlock(s[1], s[0]),
ResnetBlock(s[0], s[0]),
ResnetBlock(s[0], s[0])]})
if i != 0: arr[-1]['upsample'] = {"conv": Conv2d(s[0], s[0], 3, padding=1)}
self.up = arr
self.norm_out = GroupNorm(32, 128)
self.conv_out = Conv2d(128, 3, 3, padding=1)
def __call__(self, x):
x = self.conv_in(x)
x = self.mid(x)
for l in self.up[::-1]:
print("decode", x.shape)
for b in l['block']: x = b(x)
if 'upsample' in l:
# https://pytorch.org/docs/stable/generated/torch.nn.functional.interpolate.html ?
bs,c,py,px = x.shape
x = x.reshape(bs, c, py, 1, px, 1).expand(bs, c, py, 2, px, 2).reshape(bs, c, py*2, px*2)
x = l['upsample']['conv'](x)
x.realize()
return self.conv_out(self.norm_out(x).swish())
class Encoder:
def __init__(self):
sz = [(128, 128), (128, 256), (256, 512), (512, 512)]
self.conv_in = Conv2d(3,128,3, padding=1)
arr = []
for i,s in enumerate(sz):
arr.append({"block":
[ResnetBlock(s[0], s[1]),
ResnetBlock(s[1], s[1])]})
if i != 3: arr[-1]['downsample'] = {"conv": Conv2d(s[1], s[1], 3, stride=2, padding=(0,1,0,1))}
self.down = arr
self.mid = Mid(512)
self.norm_out = GroupNorm(32, 512)
self.conv_out = Conv2d(512, 8, 3, padding=1)
def __call__(self, x):
x = self.conv_in(x)
for l in self.down:
print("encode", x.shape)
for b in l['block']: x = b(x)
if 'downsample' in l: x = l['downsample']['conv'](x)
x = self.mid(x)
return self.conv_out(self.norm_out(x).swish())
class AutoencoderKL:
def __init__(self):
self.encoder = Encoder()
self.decoder = Decoder()
self.quant_conv = Conv2d(8, 8, 1)
self.post_quant_conv = Conv2d(4, 4, 1)
def __call__(self, x):
latent = self.encoder(x)
latent = self.quant_conv(latent)
latent = latent[:, 0:4] # only the means
print("latent", latent.shape)
latent = self.post_quant_conv(latent)
return self.decoder(latent)
# not to be confused with ResnetBlock
class ResBlock:
def __init__(self, channels, emb_channels, out_channels):
self.in_layers = [
GroupNorm(32, channels),
Tensor.silu,
Conv2d(channels, out_channels, 3, padding=1)
]
self.emb_layers = [
Tensor.silu,
Linear(emb_channels, out_channels)
]
self.out_layers = [
GroupNorm(32, out_channels),
Tensor.silu,
lambda x: x, # needed for weights loading code to work
Conv2d(out_channels, out_channels, 3, padding=1)
]
self.skip_connection = Conv2d(channels, out_channels, 1) if channels != out_channels else lambda x: x
def __call__(self, x, emb):
h = x.sequential(self.in_layers)
emb_out = emb.sequential(self.emb_layers)
h = h + emb_out.reshape(*emb_out.shape, 1, 1)
h = h.sequential(self.out_layers)
ret = self.skip_connection(x) + h
return ret
class CrossAttention:
def __init__(self, query_dim, context_dim, n_heads, d_head):
self.to_q = Linear(query_dim, n_heads*d_head, bias=False)
self.to_k = Linear(context_dim, n_heads*d_head, bias=False)
self.to_v = Linear(context_dim, n_heads*d_head, bias=False)
self.num_heads = n_heads
self.head_size = d_head
self.to_out = [Linear(n_heads*d_head, query_dim)]
def __call__(self, x, context=None):
context = x if context is None else context
q,k,v = self.to_q(x), self.to_k(context), self.to_v(context)
q,k,v = [y.reshape(x.shape[0], -1, self.num_heads, self.head_size).transpose(1,2) for y in (q,k,v)]
attention = Tensor.scaled_dot_product_attention(q, k, v).transpose(1,2)
h_ = attention.reshape(shape=(x.shape[0], -1, self.num_heads * self.head_size))
return h_.sequential(self.to_out)
class GEGLU:
def __init__(self, dim_in, dim_out):
self.proj = Linear(dim_in, dim_out * 2)
self.dim_out = dim_out
def __call__(self, x):
x, gate = self.proj(x).chunk(2, dim=-1)
return x * gate.gelu()
class FeedForward:
def __init__(self, dim, mult=4):
self.net = [
GEGLU(dim, dim*mult),
lambda x: x, # needed for weights loading code to work
Linear(dim*mult, dim)
]
def __call__(self, x):
return x.sequential(self.net)
class BasicTransformerBlock:
def __init__(self, dim, context_dim, n_heads, d_head):
self.attn1 = CrossAttention(dim, dim, n_heads, d_head)
self.ff = FeedForward(dim)
self.attn2 = CrossAttention(dim, context_dim, n_heads, d_head)
self.norm1 = LayerNorm(dim)
self.norm2 = LayerNorm(dim)
self.norm3 = LayerNorm(dim)
def __call__(self, x, context=None):
x = self.attn1(self.norm1(x)) + x
x = self.attn2(self.norm2(x), context=context) + x
x = self.ff(self.norm3(x)) + x
return x
class SpatialTransformer:
def __init__(self, channels, context_dim, n_heads, d_head):
self.norm = GroupNorm(32, channels)
assert channels == n_heads * d_head
self.proj_in = Conv2d(channels, n_heads * d_head, 1)
self.transformer_blocks = [BasicTransformerBlock(channels, context_dim, n_heads, d_head)]
self.proj_out = Conv2d(n_heads * d_head, channels, 1)
def __call__(self, x, context=None):
b, c, h, w = x.shape
x_in = x
x = self.norm(x)
x = self.proj_in(x)
x = x.reshape(b, c, h*w).permute(0,2,1)
for block in self.transformer_blocks:
x = block(x, context=context)
x = x.permute(0,2,1).reshape(b, c, h, w)
ret = self.proj_out(x) + x_in
return ret
class Downsample:
def __init__(self, channels):
self.op = Conv2d(channels, channels, 3, stride=2, padding=1)
def __call__(self, x):
return self.op(x)
class Upsample:
def __init__(self, channels):
self.conv = Conv2d(channels, channels, 3, padding=1)
def __call__(self, x):
bs,c,py,px = x.shape
x = x.reshape(bs, c, py, 1, px, 1).expand(bs, c, py, 2, px, 2).reshape(bs, c, py*2, px*2)
return self.conv(x)
def timestep_embedding(timesteps, dim, max_period=10000):
half = dim // 2
freqs = (-math.log(max_period) * Tensor.arange(half) / half).exp()
args = timesteps * freqs
return Tensor.cat(args.cos(), args.sin()).reshape(1, -1)
class UNetModel:
def __init__(self):
self.time_embed = [
Linear(320, 1280),
Tensor.silu,
Linear(1280, 1280),
]
self.input_blocks = [
[Conv2d(4, 320, kernel_size=3, padding=1)],
[ResBlock(320, 1280, 320), SpatialTransformer(320, 768, 8, 40)],
[ResBlock(320, 1280, 320), SpatialTransformer(320, 768, 8, 40)],
[Downsample(320)],
[ResBlock(320, 1280, 640), SpatialTransformer(640, 768, 8, 80)],
[ResBlock(640, 1280, 640), SpatialTransformer(640, 768, 8, 80)],
[Downsample(640)],
[ResBlock(640, 1280, 1280), SpatialTransformer(1280, 768, 8, 160)],
[ResBlock(1280, 1280, 1280), SpatialTransformer(1280, 768, 8, 160)],
[Downsample(1280)],
[ResBlock(1280, 1280, 1280)],
[ResBlock(1280, 1280, 1280)]
]
self.middle_block = [
ResBlock(1280, 1280, 1280),
SpatialTransformer(1280, 768, 8, 160),
ResBlock(1280, 1280, 1280)
]
self.output_blocks = [
[ResBlock(2560, 1280, 1280)],
[ResBlock(2560, 1280, 1280)],
[ResBlock(2560, 1280, 1280), Upsample(1280)],
[ResBlock(2560, 1280, 1280), SpatialTransformer(1280, 768, 8, 160)],
[ResBlock(2560, 1280, 1280), SpatialTransformer(1280, 768, 8, 160)],
[ResBlock(1920, 1280, 1280), SpatialTransformer(1280, 768, 8, 160), Upsample(1280)],
[ResBlock(1920, 1280, 640), SpatialTransformer(640, 768, 8, 80)], # 6
[ResBlock(1280, 1280, 640), SpatialTransformer(640, 768, 8, 80)],
[ResBlock(960, 1280, 640), SpatialTransformer(640, 768, 8, 80), Upsample(640)],
[ResBlock(960, 1280, 320), SpatialTransformer(320, 768, 8, 40)],
[ResBlock(640, 1280, 320), SpatialTransformer(320, 768, 8, 40)],
[ResBlock(640, 1280, 320), SpatialTransformer(320, 768, 8, 40)],
]
self.out = [
GroupNorm(32, 320),
Tensor.silu,
Conv2d(320, 4, kernel_size=3, padding=1)
]
def __call__(self, x, timesteps=None, context=None):
# TODO: real time embedding
t_emb = timestep_embedding(timesteps, 320)
emb = t_emb.sequential(self.time_embed)
def run(x, bb):
if isinstance(bb, ResBlock): x = bb(x, emb)
elif isinstance(bb, SpatialTransformer): x = bb(x, context)
else: x = bb(x)
return x
saved_inputs = []
for i,b in enumerate(self.input_blocks):
#print("input block", i)
for bb in b:
x = run(x, bb)
saved_inputs.append(x)
for bb in self.middle_block:
x = run(x, bb)
for i,b in enumerate(self.output_blocks):
#print("output block", i)
x = x.cat(saved_inputs.pop(), dim=1)
for bb in b:
x = run(x, bb)
return x.sequential(self.out)
class CLIPMLP:
def __init__(self):
self.fc1 = Linear(768, 3072)
self.fc2 = Linear(3072, 768)
def __call__(self, hidden_states):
hidden_states = self.fc1(hidden_states)
hidden_states = hidden_states.quick_gelu()
hidden_states = self.fc2(hidden_states)
return hidden_states
class CLIPAttention:
def __init__(self):
self.embed_dim = 768
self.num_heads = 12
self.head_dim = self.embed_dim // self.num_heads
self.k_proj = Linear(self.embed_dim, self.embed_dim)
self.v_proj = Linear(self.embed_dim, self.embed_dim)
self.q_proj = Linear(self.embed_dim, self.embed_dim)
self.out_proj = Linear(self.embed_dim, self.embed_dim)
def _shape(self, tensor, seq_len: int, bsz: int):
return tensor.reshape(bsz, seq_len, self.num_heads, self.head_dim).permute(0,2,1,3)
def __call__(self, hidden_states, causal_attention_mask):
bsz, tgt_len, embed_dim = hidden_states.shape
query_states = self.q_proj(hidden_states)
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
proj_shape = (bsz * self.num_heads, -1, self.head_dim)
query_states = self._shape(query_states, tgt_len, bsz).reshape(*proj_shape)
key_states = key_states.reshape(*proj_shape)
src_len = key_states.shape[1]
value_states = value_states.reshape(*proj_shape)
attn_output = Tensor.scaled_dot_product_attention(query_states, key_states, value_states, attn_mask=causal_attention_mask)
attn_output = attn_output.reshape(bsz, self.num_heads, tgt_len, self.head_dim)
attn_output = attn_output.permute(0,2,1,3)
attn_output = attn_output.reshape(bsz, tgt_len, embed_dim)
attn_output = self.out_proj(attn_output)
return attn_output
class CLIPEncoderLayer:
def __init__(self):
self.self_attn = CLIPAttention()
self.layer_norm1 = LayerNorm(768)
self.mlp = CLIPMLP()
self.layer_norm2 = LayerNorm(768)
def __call__(self, hidden_states, causal_attention_mask):
residual = hidden_states
hidden_states = self.layer_norm1(hidden_states)
hidden_states = self.self_attn(hidden_states, causal_attention_mask)
hidden_states = residual + hidden_states
residual = hidden_states
hidden_states = self.layer_norm2(hidden_states)
hidden_states = self.mlp(hidden_states)
hidden_states = residual + hidden_states
return hidden_states
class CLIPEncoder:
def __init__(self):
self.layers = [CLIPEncoderLayer() for i in range(12)]
def __call__(self, hidden_states, causal_attention_mask):
for l in self.layers:
hidden_states = l(hidden_states, causal_attention_mask)
return hidden_states
class CLIPTextEmbeddings:
def __init__(self):
self.token_embedding = Embedding(49408, 768)
self.position_embedding = Embedding(77, 768)
def __call__(self, input_ids, position_ids):
return self.token_embedding(input_ids) + self.position_embedding(position_ids)
class CLIPTextTransformer:
def __init__(self):
self.embeddings = CLIPTextEmbeddings()
self.encoder = CLIPEncoder()
self.final_layer_norm = LayerNorm(768)
def __call__(self, input_ids):
x = self.embeddings(input_ids, Tensor.arange(input_ids.shape[1]).reshape(1, -1))
x = self.encoder(x, Tensor.full((1, 1, 77, 77), float("-inf")).triu(1))
return self.final_layer_norm(x)
# Clip tokenizer, taken from https://github.com/openai/CLIP/blob/main/clip/simple_tokenizer.py (MIT license)
@lru_cache()
def default_bpe():
fn = Path(__file__).parent.parent / "weights/bpe_simple_vocab_16e6.txt.gz"
download_file("https://github.com/openai/CLIP/raw/main/clip/bpe_simple_vocab_16e6.txt.gz", fn)
return fn
def get_pairs(word):
"""Return set of symbol pairs in a word.
Word is represented as tuple of symbols (symbols being variable-length strings).
"""
pairs = set()
prev_char = word[0]
for char in word[1:]:
pairs.add((prev_char, char))
prev_char = char
return pairs
def whitespace_clean(text):
text = re.sub(r'\s+', ' ', text)
text = text.strip()
return text
def bytes_to_unicode():
"""
Returns list of utf-8 byte and a corresponding list of unicode strings.
The reversible bpe codes work on unicode strings.
This means you need a large # of unicode characters in your vocab if you want to avoid UNKs.
When you're at something like a 10B token dataset you end up needing around 5K for decent coverage.
This is a significant percentage of your normal, say, 32K bpe vocab.
To avoid that, we want lookup tables between utf-8 bytes and unicode strings.
And avoids mapping to whitespace/control characters the bpe code barfs on.
"""
bs = list(range(ord("!"), ord("~")+1))+list(range(ord("¡"), ord("¬")+1))+list(range(ord("®"), ord("ÿ")+1))
cs = bs[:]
n = 0
for b in range(2**8):
if b not in bs:
bs.append(b)
cs.append(2**8+n)
n += 1
cs = [chr(n) for n in cs]
return dict(zip(bs, cs))
class ClipTokenizer:
def __init__(self, bpe_path: str = default_bpe()):
self.byte_encoder = bytes_to_unicode()
merges = gzip.open(bpe_path).read().decode("utf-8").split('\n')
merges = merges[1:49152-256-2+1]
merges = [tuple(merge.split()) for merge in merges]
vocab = list(bytes_to_unicode().values())
vocab = vocab + [v+'</w>' for v in vocab]
for merge in merges:
vocab.append(''.join(merge))
vocab.extend(['<|startoftext|>', '<|endoftext|>'])
self.encoder = dict(zip(vocab, range(len(vocab))))
self.bpe_ranks = dict(zip(merges, range(len(merges))))
self.cache = {'<|startoftext|>': '<|startoftext|>', '<|endoftext|>': '<|endoftext|>'}
self.pat = re.compile(r"""<\|startoftext\|>|<\|endoftext\|>|'s|'t|'re|'ve|'m|'ll|'d|[^\s]+""", re.IGNORECASE)
def bpe(self, token):
if token in self.cache:
return self.cache[token]
word = tuple(token[:-1]) + ( token[-1] + '</w>',)
pairs = get_pairs(word)
if not pairs:
return token+'</w>'
while True:
bigram = min(pairs, key = lambda pair: self.bpe_ranks.get(pair, float('inf')))
if bigram not in self.bpe_ranks:
break
first, second = bigram
new_word = []
i = 0
while i < len(word):
try:
j = word.index(first, i)
new_word.extend(word[i:j])
i = j
except Exception:
new_word.extend(word[i:])
break
if word[i] == first and i < len(word)-1 and word[i+1] == second:
new_word.append(first+second)
i += 2
else:
new_word.append(word[i])
i += 1
new_word = tuple(new_word)
word = new_word
if len(word) == 1:
break
pairs = get_pairs(word)
word = ' '.join(word)
self.cache[token] = word
return word
def encode(self, text):
bpe_tokens = []
text = whitespace_clean(text.strip()).lower()
for token in re.findall(self.pat, text):
token = ''.join(self.byte_encoder[b] for b in token.encode('utf-8'))
bpe_tokens.extend(self.encoder[bpe_token] for bpe_token in self.bpe(token).split(' '))
# Truncation, keeping two slots for start and end tokens.
if len(bpe_tokens) > 75:
bpe_tokens = bpe_tokens[:75]
return [49406] + bpe_tokens + [49407] * (77 - len(bpe_tokens) - 1)
class StableDiffusion:
def __init__(self):
self.alphas_cumprod = Tensor.empty(1000)
self.model = namedtuple("DiffusionModel", ["diffusion_model"])(diffusion_model = UNetModel())
self.first_stage_model = AutoencoderKL()
self.cond_stage_model = namedtuple("CondStageModel", ["transformer"])(transformer = namedtuple("Transformer", ["text_model"])(text_model = CLIPTextTransformer()))
# TODO: make __call__ run the model
# ** ldm.models.autoencoder.AutoencoderKL (done!)
# 3x512x512 <--> 4x64x64 (16384)
# decode torch.Size([1, 4, 64, 64]) torch.Size([1, 3, 512, 512])
# section 4.3 of paper
# first_stage_model.encoder, first_stage_model.decoder
# ** ldm.modules.diffusionmodules.openaimodel.UNetModel
# this is what runs each time to sample. is this the LDM?
# input: 4x64x64
# output: 4x64x64
# model.diffusion_model
# it has attention?
# ** ldm.modules.encoders.modules.FrozenCLIPEmbedder
# cond_stage_model.transformer.text_model
# this is sd-v1-4.ckpt
FILENAME = Path(__file__).parent.parent / "weights/sd-v1-4.ckpt"
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='Run Stable Diffusion', formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('--steps', type=int, default=5, help="Number of steps in diffusion")
parser.add_argument('--prompt', type=str, default="a horse sized cat eating a bagel", help="Phrase to render")
parser.add_argument('--out', type=str, default=os.path.join(tempfile.gettempdir(), "rendered.png"), help="Output filename")
parser.add_argument('--noshow', action='store_true', help="Don't show the image")
args = parser.parse_args()
Tensor.no_grad = True
model = StableDiffusion()
# load in weights
download_file('https://huggingface.co/CompVis/stable-diffusion-v-1-4-original/resolve/main/sd-v1-4.ckpt', FILENAME)
load_state_dict(model, torch_load(FILENAME)['state_dict'], strict=False)
# run through CLIP to get context
tokenizer = ClipTokenizer()
prompt = Tensor([tokenizer.encode(args.prompt)])
context = model.cond_stage_model.transformer.text_model(prompt).realize()
print("got CLIP context", context.shape)
prompt = Tensor([tokenizer.encode("")])
unconditional_context = model.cond_stage_model.transformer.text_model(prompt).realize()
print("got unconditional CLIP context", unconditional_context.shape)
# done with clip model
del model.cond_stage_model
def get_model_output(latent, timestep):
# put into diffuser
latents = model.model.diffusion_model(latent.expand(2, *latent.shape[1:]), timestep.expand(2, *timestep.shape[1:]), unconditional_context.cat(context, dim=0))
unconditional_latent, latent = latents[0:1], latents[1:2]
unconditional_guidance_scale = 7.5
e_t = unconditional_latent + unconditional_guidance_scale * (latent - unconditional_latent)
return e_t
timesteps = list(range(1, 1000, 1000//args.steps))
print(f"running for {timesteps} timesteps")
alphas = [model.alphas_cumprod.numpy()[t] for t in timesteps]
alphas_prev = [1.0] + alphas[:-1]
def get_x_prev_and_pred_x0(x, e_t, index):
temperature = 1
a_t, a_prev = alphas[index], alphas_prev[index]
sigma_t = 0
sqrt_one_minus_at = math.sqrt(1-a_t)
#print(a_t, a_prev, sigma_t, sqrt_one_minus_at)
pred_x0 = (x - sqrt_one_minus_at * e_t) / math.sqrt(a_t)
# direction pointing to x_t
dir_xt = math.sqrt(1. - a_prev - sigma_t**2) * e_t
noise = sigma_t * Tensor.randn(*x.shape) * temperature
x_prev = math.sqrt(a_prev) * pred_x0 + dir_xt #+ noise
return x_prev, pred_x0
# start with random noise
latent = Tensor.randn(1,4,64,64)
# this is diffusion
for index, timestep in (t:=tqdm(list(enumerate(timesteps))[::-1])):
GlobalCounters.reset()
t.set_description("%3d %3d" % (index, timestep))
e_t = get_model_output(latent, Tensor([timestep]))
x_prev, pred_x0 = get_x_prev_and_pred_x0(latent, e_t, index)
#e_t_next = get_model_output(x_prev)
#e_t_prime = (e_t + e_t_next) / 2
#x_prev, pred_x0 = get_x_prev_and_pred_x0(latent, e_t_prime, index)
latent = x_prev
latent.realize()
# upsample latent space to image with autoencoder
x = model.first_stage_model.post_quant_conv(1/0.18215 * latent)
x = model.first_stage_model.decoder(x)
# make image correct size and scale
x = (x + 1.0) / 2.0
x = (x.reshape(3,512,512).permute(1,2,0).clip(0,1)*255).cast(dtypes.uint8)
print(x.shape)
# save image
from PIL import Image
im = Image.fromarray(x.numpy())
print(f"saving {args.out}")
im.save(args.out)
# Open image.
if not args.noshow: im.show()