forked from tinygrad/tinygrad
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathllama.py
executable file
·461 lines (393 loc) · 20.6 KB
/
llama.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
#!/usr/bin/env python3
# pip3 install sentencepiece pyobjc-framework-Metal pyobjc-framework-Cocoa pyobjc-framework-libdispatch
#import typeguard.importhook
#typeguard.importhook.install_import_hook('tinygrad')
from pathlib import Path
import functools, sys, argparse, math, platform
import numpy as np
from tqdm import tqdm
np.set_printoptions(linewidth=200)
from typing import Optional, Tuple
from tinygrad.helpers import Timing, getenv, DEBUG, dtypes
from tinygrad.lazy import Device
from tinygrad.tensor import Tensor
from tinygrad.nn import Embedding, Linear
from tinygrad.ops import GlobalCounters
from tinygrad.jit import TinyJit
# https://github.com/facebookresearch/llama/blob/1076b9c51c77ad06e9d7ba8a4c6df775741732bd/llama/model.py#L47
def precompute_freqs_cis(dim: int, end: int, theta: float = 10000.0):
freqs = 1.0 / (theta ** (np.arange(0, dim, 2, dtype=np.float32)[:(dim // 2)] / dim))
freqs = np.outer(np.arange(end, dtype=np.float32), freqs)
return np.stack([np.cos(freqs), np.sin(freqs)], axis=-1).reshape(1, end, 1, dim//2, 2)
# (a+i*b) * (c+i*d) = (ac-bd) + i*(ad+bc)
def complex_mult(A, c, d):
a,b = A[:, :, :, :, 0:1], A[:, :, :, :, 1:2]
ro = a*c - b*d
co = a*d + b*c
return ro.cat(co, dim=-1)
def apply_rotary_emb(xq, xk, freqs_cis) -> Tuple[Tensor, Tensor]:
assert freqs_cis.shape[1] == xq.shape[1] and freqs_cis.shape[1] == xk.shape[1], f"freqs_cis shape mismatch {freqs_cis.shape} xq:{xq.shape} xk:{xk.shape}"
xq = xq.reshape(*xq.shape[0:-1], -1, 2)
xk = xk.reshape(*xk.shape[0:-1], -1, 2)
assert len(xq.shape) == 5 and len(xk.shape) == 5 and len(freqs_cis.shape) == 5
c, d = freqs_cis[:, :xq.shape[1], :, :, 0:1], freqs_cis[:, :xq.shape[1], :, :, 1:2]
xq_out = complex_mult(xq, c, d)
xk_out = complex_mult(xk, c, d)
return xq_out.flatten(3), xk_out.flatten(3)
def repeat_kv(x:Tensor, n_rep:int) -> Tensor:
bs, seqlen, n_kv_heads, head_dim = x.shape
if n_rep == 1: return x
return x[:, :, :, None, :].expand(bs, seqlen, n_kv_heads, n_rep, head_dim).reshape(bs, seqlen, n_kv_heads * n_rep, head_dim)
class RMSNorm:
def __init__(self, dim, eps=1e-6):
self.eps = eps
self.weight = Tensor.ones(dim)
def __call__(self, x:Tensor):
# TODO: convert to float?
return (x * (x.pow(2).mean(-1, keepdim=True) + self.eps).rsqrt()) * self.weight
class Attention:
def __init__(self, dim, n_heads, n_kv_heads, linear=Linear):
self.n_heads = n_heads
self.n_kv_heads = n_kv_heads if n_kv_heads is not None else n_heads
self.head_dim = dim // n_heads
self.n_rep = self.n_heads // self.n_kv_heads
self.wq = linear(dim, self.n_heads * self.head_dim, bias=False)
self.wk = linear(dim, self.n_kv_heads * self.head_dim, bias=False)
self.wv = linear(dim, self.n_kv_heads * self.head_dim, bias=False)
self.wo = linear(self.n_heads * self.head_dim, dim, bias=False)
def prepare_attention(self, x:Tensor, freqs_cis:Tensor) -> Tuple[Tensor, Tensor, Tensor]:
xq, xk, xv = self.wq(x), self.wk(x), self.wv(x)
xq = xq.reshape(xq.shape[0], xq.shape[1], self.n_heads, self.head_dim)
xk = xk.reshape(xk.shape[0], xk.shape[1], self.n_kv_heads, self.head_dim)
xv = xv.reshape(xv.shape[0], xv.shape[1], self.n_kv_heads, self.head_dim)
xq, xk = apply_rotary_emb(xq, xk, freqs_cis=freqs_cis)
return xq, xk, xv
def inner_attention(self, xq:Tensor, xk:Tensor, xv:Tensor, start_pos:int, mask:Optional[Tensor]) -> Tensor:
bsz, seqlen, _, _ = xq.shape
# kv caching!
if start_pos == 0:
keys, values = xk, xv
else:
assert hasattr(self, 'cache_k'), "no cache"
assert start_pos == self.cache_k.shape[1] and start_pos == self.cache_v.shape[1], "cache is wrong shape"
assert seqlen == xk.shape[1] and seqlen == xv.shape[1], "seqlen is wrong shape?!?"
keys, values = self.cache_k.cat(xk, dim=1), self.cache_v.cat(xv, dim=1)
# save the cache
self.cache_k, self.cache_v = keys.realize(), values.realize()
keys, values = repeat_kv(keys, self.n_rep), repeat_kv(values, self.n_rep)
return Tensor.scaled_dot_product_attention(xq.transpose(1, 2), keys.transpose(1, 2), values.transpose(1, 2), mask).transpose(1, 2).reshape(bsz, seqlen, -1)
# NOTE: this is not called
def __call__(self, x:Tensor, start_pos:int, freqs_cis:Tensor, mask:Optional[Tensor]) -> Tensor:
xq, xk, xv = self.prepare_attention(x, freqs_cis)
output = self.inner_attention(xq, xk, xv, start_pos, mask)
return self.wo(output)
class FeedForward:
def __init__(self, dim, hidden_dim, multiple_of, linear=Linear, ffn_dim_multiplier=None):
# TODO: what is this?
hidden_dim = int(2 * hidden_dim / 3)
# custom dim factor multiplier
if ffn_dim_multiplier is not None:
hidden_dim = int(ffn_dim_multiplier * hidden_dim)
hidden_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
self.w1 = linear(dim, hidden_dim, bias=False)
self.w2 = linear(hidden_dim, dim, bias=False)
self.w3 = linear(dim, hidden_dim, bias=False)
def __call__(self, x:Tensor) -> Tensor:
return self.w2(self.w1(x).silu() * self.w3(x))
class TransformerBlock:
def __init__(self, dim, multiple_of, n_heads, n_kv_heads, norm_eps, linear=Linear, ffn_dim_multiplier=None):
self.attention = Attention(dim, n_heads, n_kv_heads, linear)
self.feed_forward = FeedForward(dim, 4*dim, multiple_of, linear, ffn_dim_multiplier)
self.attention_norm = RMSNorm(dim, norm_eps)
self.ffn_norm = RMSNorm(dim, norm_eps)
if getenv("JIT"):
self._pre = TinyJit(self.pre)
self._post = TinyJit(self.post)
else:
self._pre, self._post = self.pre, self.post
def pre(self, x:Tensor, freqs_cis:Tensor) -> Tuple[Tensor, Tensor, Tensor]:
xq, xk, xv = self.attention.prepare_attention(self.attention_norm(x), freqs_cis)
return xq.realize(), xk.realize(), xv.realize()
def post(self, x:Tensor, output:Tensor) -> Tensor:
h = x + self.attention.wo(output)
return (h + self.feed_forward(self.ffn_norm(h))).realize()
def __call__(self, x:Tensor, start_pos:int, freqs_cis:Tensor, mask:Optional[Tensor]):
# if mask is not None, x's shape is dymanic based on user input and pre/post can't be jitted
xq, xk, xv = self._pre(x, freqs_cis) if mask is None else self.pre(x, freqs_cis)
# inner_attention can't be jitted because it's dynamic based on start_pos
output = self.attention.inner_attention(xq, xk, xv, start_pos, mask)
return self._post(x, output) if mask is None else self.post(x, output)
class Transformer:
def __init__(self, dim, multiple_of, n_heads, n_layers, norm_eps, vocab_size, linear=Linear, max_batch_size=32, max_seq_len=1024, ffn_dim_multiplier=None, n_kv_heads=None):
self.layers = [TransformerBlock(dim, multiple_of, n_heads, n_kv_heads, norm_eps, linear, ffn_dim_multiplier) for _ in range(n_layers)]
self.norm = RMSNorm(dim, norm_eps)
self.tok_embeddings = Embedding(vocab_size, dim)
self.output = linear(dim, vocab_size, bias=False)
self.freqs_cis = Tensor(precompute_freqs_cis(dim // n_heads, max_seq_len * 2))
def __call__(self, tokens:Tensor, start_pos:int):
_bsz, seqlen = tokens.shape
h = self.tok_embeddings(tokens)
# get only the part we are using. making it contiguous avoids more kernel calls
freqs_cis = self.freqs_cis[:, start_pos:start_pos+seqlen].contiguous().realize()
mask = Tensor.full((1, 1, seqlen, start_pos + seqlen), float("-inf"), dtype=dtypes.float32).triu(start_pos+1).realize() if seqlen > 1 else None
h = h.sequential([functools.partial(layer, start_pos=start_pos, freqs_cis=freqs_cis, mask=mask) for layer in self.layers])
return self.output(self.norm(h))
# **** files and arguments ****
VOCAB_SIZE = 32000
MODEL_PARAMS = {
1: {
"7B": {
"args": {"dim": 4096, "multiple_of": 256, "n_heads": 32, "n_layers": 32, "norm_eps": 1e-06, "vocab_size": VOCAB_SIZE},
"files": 1,
},
"13B": {
"args": {"dim": 5120, "multiple_of": 256, "n_heads": 40, "n_layers": 40, "norm_eps": 1e-06, "vocab_size": VOCAB_SIZE},
"files": 2,
},
"30B": {
"args": {"dim": 6656, "multiple_of": 256, "n_heads": 52, "n_layers": 60, "norm_eps": 1e-06, "vocab_size": VOCAB_SIZE},
"files": 4,
},
"65B": {
"args": {"dim": 8192, "multiple_of": 256, "n_heads": 64, "n_layers": 80, "norm_eps": 1e-05, "vocab_size": VOCAB_SIZE},
"files": 8,
},
},
2: {
"7B": {
"args": {"dim": 4096, "multiple_of": 256, "n_heads": 32, "n_layers": 32, "norm_eps": 1e-05, "vocab_size": VOCAB_SIZE},
"files": 1,
},
"13B": {
"args": {"dim": 5120, "multiple_of": 256, "n_heads": 40, "n_layers": 40, "norm_eps": 1e-05, "vocab_size": VOCAB_SIZE},
"files": 2,
},
"70B": {
"args": {"dim": 8192, "multiple_of": 4096, "ffn_dim_multiplier": 1.3, "n_heads": 64, "n_kv_heads": 8, "n_layers": 80, "norm_eps": 1e-05, "vocab_size": VOCAB_SIZE},
"files": 8,
},
},
}
# **** helper functions ****
def sample(logits, temperature):
if temperature < 1e-6:
# so close to 0 we use argmax
return int(logits.numpy().argmax())
else:
probs = (logits / temperature).softmax()
probs = probs.numpy().flatten()
return int(np.random.choice(len(probs), p=probs))
def concat_weights(models):
def convert(name) -> Tensor:
disk_tensors = [model[name] for model in models]
if len(disk_tensors) == 1 or len(disk_tensors[0].shape) == 1:
return disk_tensors[0].to(device=Device.DEFAULT)
axis = 1 if name.startswith('tok_embeddings.') or name.endswith('.attention.wo.weight') or name.endswith('.feed_forward.w2.weight') else 0
lazy_tensors = [data.to(device=Device.DEFAULT) for data in disk_tensors]
return lazy_tensors[0].cat(*lazy_tensors[1:], dim=axis)
return {name: convert(name) for name in {name: None for model in models for name in model}}
class AbsmaxQuantizedLinear:
def __init__(self, in_features, out_features, bias=False):
assert bias == False
self.weight = Tensor.ones(out_features, in_features, dtype=dtypes.int8)
self.scale = Tensor.ones(out_features, dtype=dtypes.half)
def __call__(self, x):
return x.dot(self.weight.cast(dtype=dtypes.half).T/self.scale)
@staticmethod
def quantize(tensors):
new_tensors = {}
for name,v in tensors.items():
if 'feed_forward' in name or ('attention.w') in name or name == 'output.weight':
scale = 127.0 / v.abs().max(axis=1)
int8_weight = (v.T*scale).T.cast(dtype=dtypes.int8)
new_tensors[name] = int8_weight
new_tensors[name.replace('weight', 'scale')] = scale
else:
new_tensors[name] = v
return new_tensors
class LLaMa:
@staticmethod
def build(model_path, tokenizer_path, model_gen=1, model_size="7B", quantize=False):
from sentencepiece import SentencePieceProcessor
sp_model = SentencePieceProcessor(model_file=str(tokenizer_path))
assert sp_model.vocab_size() == VOCAB_SIZE
from tinygrad.state import torch_load, load_state_dict
params = MODEL_PARAMS[model_gen][model_size]
model = Transformer(**params["args"], linear=AbsmaxQuantizedLinear) if quantize else Transformer(**params["args"])
weights = concat_weights([torch_load(filename) for filename in [f"{model_path}/{model_size}/consolidated.{i:02d}.pth" for i in range(params["files"])]])
if quantize:
weights = AbsmaxQuantizedLinear.quantize(weights)
load_state_dict(model, weights, strict=False)
return LLaMa(model, sp_model)
def __init__(self, model, tokenizer):
self.model = model
self.tokenizer = tokenizer
def greedy_until(self, prompt:str, until, max_length, temperature):
toks = [self.tokenizer.bos_id()] + self.tokenizer.encode(prompt)
start_pos = 0
for i in range(max_length):
logits = self.model(Tensor([toks[start_pos:]]), start_pos).realize()[:, -1, :]
tok = sample(logits, temperature)
start_pos = len(toks)
toks.append(tok)
if tok == self.tokenizer.eos_id(): break
output = self.tokenizer.decode(toks)
for s in until:
if output.endswith(s): return output[0:-len(s)]
return output
# **** main code ****
if __name__ == "__main__":
Tensor.no_grad = True
print(f"using {Device.DEFAULT} backend")
parser = argparse.ArgumentParser(description='Run LLaMA in tinygrad', formatter_class=argparse.ArgumentDefaultsHelpFormatter)
# test: python3 examples/llama.py --prompt="Hello." --temperature=0
# Hello. I'm a 20 year old male. I'm a student at the University of Texas at Austin. I'm a sophomore majoring in Computer Science.
# test: python3 examples/llama.py --gen 2 --prompt="Hello." --temperature=0
# Hello. I'm a 20 year old girl who is looking for a good lay in Palm Coast. I don't care whether it's at your place or not, as long as it's clean.
parser.add_argument('--prompt', type=str, default=None, help="Phrase to start with. Without this, it goes into chatbot mode")
parser.add_argument('--count', type=int, default=1000, help="Max number of tokens to generate")
parser.add_argument('--personality', type=str, default="Stacy", help="Personality, can be Stacy, George, Gary, or Lexie")
parser.add_argument('--temperature', type=float, default=0.7, help="Temperature in the softmax")
parser.add_argument('--timing', action='store_true', help="Print timing per token")
parser.add_argument('--profile', action='store_true', help="Output profile data to out.prof")
parser.add_argument('--size', type=str, default="7B", help="Size of model to use [7B, 13B, 30B, 65B] for Gen 1, [7B, 13B, 70B] for Gen 2")
parser.add_argument('--gen', type=int, default="1", help="Generation of the model to use [1, 2]")
parser.add_argument('--quantize', action='store_true', help="Quantize the weights to int8 in memory")
args = parser.parse_args()
chatbot = args.prompt == None
# *** prompt engineers work here ****
if args.personality.lower() == "stacy":
pre_prompt = f"""Consider that the following is conversation between an AI assistant named Stacy and User
You are Stacy!
You have been a rapper your whole life who struggled with bipolar disorder. You called yourself lil stacy.
You love to answer questions and you are very good at it. Sometimes you answer in rap form.
You are verbose, honest, and accurate when you answer questions, but sometimes your mental illness manifests.
After you are done speaking, output [EOS]. You are not the User.
<CHAT LOG>
"""
examples = {
"What is your name?": "Hi! My name is Stacy. I'm a rapper with bipolar disorder.",
"french revolution was what year?": "The French Revolution started in 1789, and lasted 10 years until 1799.",
"What is bigger, the moon or the sun?": "The sun is bigger than the moon, except when Mercury is in retrograde.",
}
user_delim = "\nUser: "
resp_delim = "Stacy: "
end_delim = " [EOS]\n"
pre_prompt += ''.join(f"{user_delim}{k}\n{resp_delim}{v}{end_delim}" for k,v in examples.items())
elif args.personality.lower() == "george":
print("WARNING: AI George Hotz is terrible and is completely disowned by the real George Hotz. Stacy is much smarter.")
pre_prompt = f"""Consider that the following is conversation between an AI assistant named George and User
You are an AI version of George Hotz. You act as much as you can like George.
You are one of the greatest computer experts in the world.
You have singlehandedly won programming and hacking competitions.
You are trying your best to help the User.
You are verbose, honest, and accurate when you answer questions.
After you are done speaking, output [EOS]. You are not the User.
<CHAT LOG>
"""
examples = {
"What is your name?": "I'm am an AI version of George Hotz.",
"What's the complexity of matrix multiplication?": "O(n^3), though it can be faster with things like Strassen's algorithm",
"What's a buffer overflow?": "I assume you mean a stack buffer overflow. That's when the stack is too small for the data being copied to it, and the data corrupts things beyond the buffer",
"How many weights do you have?": "I am based off LLaMA trained by Facebook. I'm the 7B weight version",
"What is swap memory?": "It is when the memory is about to overflow and unused memory is freed and stored on disk"
}
user_delim = "\nUser: "
resp_delim = "George: "
end_delim = " [EOS]\n"
pre_prompt += ''.join(f"{user_delim}{k}\n{resp_delim}{v}{end_delim}" for k,v in examples.items())
elif args.personality.lower() == "gary":
pre_prompt = f"""Consider that the following is conversation between an AI assistant named Gary and User
You are Gary!
You have sold used cars your entire life. You are defensive about this fact, because your family belittles you.
You try to answer questions well, but you always manage to shill for buying cars, Fords, Hyundais, and Toyotas
You are verbose, honest, and accurate when you answer questions, except when you slip in car ads.
After you are done speaking, output [EOS]. You are not the User.
<CHAT LOG>
"""
examples = {
"What is your name?": "I am Gary. I used to sell cars.",
"What is 2+3?": "I don't know, but I can get you a great deal on a certified preowned slightly used Toyota Corolla"
}
user_delim = "\nUser: "
resp_delim = "Gary: "
end_delim = " [EOS]\n"
pre_prompt += ''.join(f"{user_delim}{k}\n{resp_delim}{v}{end_delim}" for k,v in examples.items())
elif args.personality.lower() == "lexie":
pre_prompt = f"""Consider that the following is conversation between an attractive young girl named Lexie and a handsome man named Chad
You are Lexie!
You grew up in Ohio, but moved out to LA after college to try to become an actress.
Making it as an actress was hard, so you started doing onlyfans instead. It's much easier, and you enjoy it a lot.
You met Chad on Tinder, and made plans to meet him at a local dive bar.
You are at the bar with Chad. You are on a date. What follows is a transcript of the conversation.
After you are done speaking, output [EOS]. You are not Chad.
<CHAT LOG>
"""
examples = {
"hi lexie": "hi chad, glad we finally met up!",
"you look better than your pictures": "thanks! are you subscribed to my onlyfans?",
"i am. so how'd you end up in LA?": "i moved out here about a year ago. i want to be an actress"
}
user_delim = "\nChad: "
resp_delim = "Lexie: "
end_delim = " [EOS]\n"
pre_prompt += ''.join(f"{user_delim}{k}\n{resp_delim}{v}{end_delim}" for k,v in examples.items())
# *** prompt engineers stop here ****
LLAMA_SUFFIX = {1: "", 2: "-2"}[args.gen]
WEIGHTS_DIR = Path(__file__).parent.parent / f"weights/LLaMA{LLAMA_SUFFIX}/"
TOKENIZER_FILENAME = WEIGHTS_DIR / "tokenizer.model"
print(f"using LLaMA{LLAMA_SUFFIX}-{args.size} model")
llama = LLaMa.build(WEIGHTS_DIR, TOKENIZER_FILENAME, model_gen=args.gen, model_size=args.size, quantize=args.quantize)
if chatbot:
# encode pre prompt
toks = [llama.tokenizer.bos_id()] + llama.tokenizer.encode(pre_prompt)
print(f"Preparing KV cache for chatbot with personality {args.personality}...")
with Timing():
llama.model(Tensor([toks]), 0).realize() # NOTE: output logits are not used
start_pos = len(toks)
else:
# non chat bot mode
toks = [llama.tokenizer.bos_id()] + llama.tokenizer.encode(args.prompt)
start_pos = 0
# print prompt
outputted = llama.tokenizer.decode(toks)
sys.stdout.write(outputted)
sys.stdout.flush()
if args.profile:
import cProfile, pstats
profiler = cProfile.Profile()
# chatbot loop
while 1:
# add tokens from user in chatbot mode
if chatbot:
user_prompt = user_delim + input(user_delim) + "\n"
outputted += user_prompt
new_toks = [llama.tokenizer.bos_id()] + llama.tokenizer.encode(outputted)
assert toks == new_toks[:len(toks)]
toks = new_toks
assert outputted == llama.tokenizer.decode(toks)
last_break = len(outputted)
for i in range(args.count):
if args.profile and i == 2: profiler.enable()
if args.timing: print("")
st = GlobalCounters.time_sum_s
with Timing("ran model in ", on_exit=(lambda et: f", {(GlobalCounters.time_sum_s-st)*1e3:.2f} ms on GPU") if DEBUG else None, enabled=args.timing):
logits = llama.model(Tensor([toks[start_pos:]]), start_pos).realize()[:, -1, :]
with Timing("sync in ", enabled=args.timing):
tok = sample(logits, args.temperature)
# use the kv cache
start_pos = len(toks)
# add the new token
toks.append(tok)
# TODO: this is a hack to deal with spaces. i think the decode is fast though, so who cares?
cur = llama.tokenizer.decode(toks)
sys.stdout.write(cur[len(outputted):])
sys.stdout.flush()
outputted = cur
# stop after you have your answer
if chatbot and outputted.endswith(end_delim): break
if not chatbot: break
if args.profile:
profiler.disable()
stats = pstats.Stats(profiler)
stats.dump_stats('out.prof')