From 4cd9e48670c7009099f4d900a5f3461cfb802755 Mon Sep 17 00:00:00 2001 From: arthw <14088817+arthw@users.noreply.github.com> Date: Sat, 13 Jul 2024 14:43:57 +0800 Subject: [PATCH] cherry-pick b549a1bbefb2f1fbb8b558bac1f2ae7967e60964, [SYCL] Fix WARP_SIZE=16 bug of Intel GPU (#8266) * fix group_norm ut * split softmax * fix softmax * add concat support condition * revert debug code * move QK_WARP_SIZE to presets.hpp Fix issue in above PR: fix norm() nullptr lead to crash on iGPU. use WARP_32_SIZE replace QK_WARP_SIZE optimize dmmv.cpp for iGPU. add sycl_hw.cpp to detect Hardware info. --- ggml/src/CMakeLists.txt | 2 +- ggml/src/ggml-sycl.cpp | 21 +++- ggml/src/ggml-sycl/common.cpp | 5 + ggml/src/ggml-sycl/common.hpp | 4 + ggml/src/ggml-sycl/dmmv.cpp | 177 +++++++++++++++++++++------------ ggml/src/ggml-sycl/norm.cpp | 20 +++- ggml/src/ggml-sycl/presets.hpp | 3 + ggml/src/ggml-sycl/sycl_hw.cpp | 17 ++++ ggml/src/ggml-sycl/sycl_hw.hpp | 24 +++++ 9 files changed, 203 insertions(+), 70 deletions(-) create mode 100644 ggml/src/ggml-sycl/sycl_hw.cpp create mode 100644 ggml/src/ggml-sycl/sycl_hw.hpp diff --git a/ggml/src/CMakeLists.txt b/ggml/src/CMakeLists.txt index 08b71d410d82e..8d96a04b57beb 100644 --- a/ggml/src/CMakeLists.txt +++ b/ggml/src/CMakeLists.txt @@ -490,7 +490,7 @@ if (GGML_SYCL) set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -fsycl-targets=nvptx64-nvidia-cuda") add_compile_definitions(GGML_SYCL_WARP_SIZE=32) else() - add_compile_definitions(GGML_SYCL_WARP_SIZE=32) + add_compile_definitions(GGML_SYCL_WARP_SIZE=16) endif() file(GLOB GGML_HEADERS_SYCL "ggml-sycl/*.hpp") diff --git a/ggml/src/ggml-sycl.cpp b/ggml/src/ggml-sycl.cpp index 5d2cfdb71a5a2..77d41ddeee1de 100644 --- a/ggml/src/ggml-sycl.cpp +++ b/ggml/src/ggml-sycl.cpp @@ -906,6 +906,10 @@ static void soft_max_f32(const float * x, const float * mask, float * dst, const const int warp_id = item_ct1.get_local_id(2) / WARP_SIZE; const int lane_id = item_ct1.get_local_id(2) % WARP_SIZE; + const int nthreads = block_size; + const int nwarps = nthreads / WARP_SIZE; + int nreduce = nwarps / WARP_SIZE; + float slope = 1.0f; @@ -919,7 +923,7 @@ static void soft_max_f32(const float * x, const float * mask, float * dst, const slope = sycl::pow(base, float(exp)); } - float * vals = vals_smem ? buf + WARP_SIZE : dst + rowx*ncols; + float *vals = vals_smem ? buf + std::max(nwarps, WARP_SIZE) : dst + rowx * ncols; float max_val = -INFINITY; for (int col0 = 0; col0 < ncols; col0 += block_size) { @@ -943,6 +947,9 @@ static void soft_max_f32(const float * x, const float * mask, float * dst, const if (block_size > WARP_SIZE) { if (warp_id == 0) { buf[lane_id] = -INFINITY; + for (size_t i = 1; i < nreduce; i += 1) + buf[lane_id + i * WARP_SIZE] = -INFINITY; + } item_ct1.barrier(sycl::access::fence_space::local_space); @@ -952,6 +959,11 @@ static void soft_max_f32(const float * x, const float * mask, float * dst, const item_ct1.barrier(sycl::access::fence_space::local_space); max_val = buf[lane_id]; + for (size_t i = 1; i < nreduce; i += 1) + { + max_val = std::max(max_val, buf[lane_id + i * WARP_SIZE]); + } + max_val = warp_reduce_max(max_val, item_ct1); } @@ -975,6 +987,9 @@ static void soft_max_f32(const float * x, const float * mask, float * dst, const item_ct1.barrier(sycl::access::fence_space::local_space); if (warp_id == 0) { buf[lane_id] = 0.f; + for (size_t i = 1; i < nreduce; i += 1) + buf[lane_id + i * WARP_SIZE] = 0.f; + } item_ct1.barrier(sycl::access::fence_space::local_space); @@ -984,6 +999,10 @@ static void soft_max_f32(const float * x, const float * mask, float * dst, const item_ct1.barrier(sycl::access::fence_space::local_space); tmp = buf[lane_id]; + for (size_t i = 1; i < nreduce; i += 1) + { + tmp += buf[lane_id + i * WARP_SIZE]; + } tmp = warp_reduce_sum(tmp, item_ct1); } diff --git a/ggml/src/ggml-sycl/common.cpp b/ggml/src/ggml-sycl/common.cpp index c0214329998b8..ad530689b0099 100644 --- a/ggml/src/ggml-sycl/common.cpp +++ b/ggml/src/ggml-sycl/common.cpp @@ -314,6 +314,7 @@ void sycl_device_mgr::detect_all_sycl_device_list() try { dpct::get_device_info(prop, device); work_group_sizes.push_back(prop.get_max_work_group_size()); max_compute_units.push_back(prop.get_max_compute_units()); + hw_familys.push_back(get_device_family(&device)); } return; } catch (sycl::exception const &exc) { @@ -498,4 +499,8 @@ int ggml_sycl_device_info::get_device_id(int device_index) { } } +int ggml_sycl_device_info::hw_family(int device_id) { + return device_mgr->hw_familys[device_id]; +} + //--ggml_sycl_device_info-- diff --git a/ggml/src/ggml-sycl/common.hpp b/ggml/src/ggml-sycl/common.hpp index 5a2f1664dc9aa..8494f7f356051 100644 --- a/ggml/src/ggml-sycl/common.hpp +++ b/ggml/src/ggml-sycl/common.hpp @@ -20,6 +20,7 @@ #include "dpct/helper.hpp" #include "ggml-sycl.h" #include "presets.hpp" +#include "sycl_hw.hpp" #define GGML_COMMON_DECL_SYCL #define GGML_COMMON_IMPL_SYCL @@ -188,6 +189,8 @@ class sycl_device_mgr { std::vector devices; std::vector max_compute_units; std::vector work_group_sizes; + std::vector hw_familys; + sycl::queue *first_queue; std::vector _queues; std::vector ctxs; @@ -236,6 +239,7 @@ struct ggml_sycl_device_info { bool is_allowed_device(int device_id); const char* devices_list(); int get_device_id(int device_index); + int hw_family(int device_id); }; struct ggml_sycl_pool { diff --git a/ggml/src/ggml-sycl/dmmv.cpp b/ggml/src/ggml-sycl/dmmv.cpp index 927819281fd0a..663c83a2e7455 100644 --- a/ggml/src/ggml-sycl/dmmv.cpp +++ b/ggml/src/ggml-sycl/dmmv.cpp @@ -20,8 +20,10 @@ static void convert_f32(const void * vx, const int ib, const int iqs, dfloat2 & } template -static void dequantize_mul_mat_vec(const void * __restrict__ vx, const dfloat * __restrict__ y, float * __restrict__ dst, const int ncols, const int nrows, +static void dequantize_mul_mat_vec(const void * __restrict__ vx, const dfloat * __restrict__ y, float * __restrict__ dst, + const int ncols, const int nrows, const int warp_size, const sycl::nd_item<3> &item_ct1) { + // qk = quantized weights per x block // qr = number of quantized weights per data value in x block const int row = item_ct1.get_group(2) * item_ct1.get_local_range(1) + @@ -34,7 +36,7 @@ static void dequantize_mul_mat_vec(const void * __restrict__ vx, const dfloat * const int tid = item_ct1.get_local_id(2); const int iter_stride = 2*GGML_SYCL_DMMV_X; - const int vals_per_iter = iter_stride / WARP_SIZE; // num quantized vals per thread and i iter + const int vals_per_iter = iter_stride / warp_size; // num quantized vals per thread and i iter const int y_offset = qr == 1 ? 1 : qk/2; // partial sum for each thread @@ -76,7 +78,7 @@ static void dequantize_mul_mat_vec(const void * __restrict__ vx, const dfloat * // sum up partial sums and write back result #pragma unroll - for (int mask = WARP_SIZE / 2; mask > 0; mask >>= 1) { + for (int mask = warp_size / 2; mask > 0; mask >>= 1) { tmp += dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), tmp, mask); } @@ -93,21 +95,32 @@ static void dequantize_mul_mat_vec(const void * __restrict__ vx, const dfloat * static void convert_mul_mat_vec_f16_sycl(const void *vx, const dfloat *y, float *dst, const int ncols, const int nrows, - dpct::queue_ptr stream) { + dpct::queue_ptr stream, + int device_id) { GGML_ASSERT(ncols % GGML_SYCL_DMMV_X == 0); + dpct::has_capability_or_fail(stream->get_device(), {sycl::aspect::fp16}); + const int block_num_y = (nrows + GGML_SYCL_MMV_Y - 1) / GGML_SYCL_MMV_Y; const sycl::range<3> block_nums(1, 1, block_num_y); - const sycl::range<3> block_dims(1, GGML_SYCL_MMV_Y, WARP_SIZE); - { - dpct::has_capability_or_fail(stream->get_device(), - {sycl::aspect::fp16}); + if (ggml_sycl_info().hw_family(device_id) == SYCL_HW_FAMILY_INTEL_IGPU) { + const sycl::range<3> block_dims(1, GGML_SYCL_MMV_Y, WARP_32_SIZE); stream->parallel_for( sycl::nd_range<3>(block_nums * block_dims, block_dims), - [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(WARP_SIZE)]] { - dequantize_mul_mat_vec<1, 1, convert_f16>(vx, y, dst, ncols, - nrows, item_ct1); - }); + [=](sycl::nd_item<3> item_ct1) + [[intel::reqd_sub_group_size(WARP_32_SIZE)]] { + dequantize_mul_mat_vec<1, 1, convert_f16>( + vx, y, dst, ncols, nrows, WARP_32_SIZE, item_ct1); + }); + } else { + const sycl::range<3> block_dims(1, GGML_SYCL_MMV_Y, WARP_SIZE); + stream->parallel_for( + sycl::nd_range<3>(block_nums * block_dims, block_dims), + [=](sycl::nd_item<3> item_ct1) + [[intel::reqd_sub_group_size(WARP_SIZE)]] { + dequantize_mul_mat_vec<1, 1, convert_f16>( + vx, y, dst, ncols, nrows, WARP_SIZE, item_ct1); + }); } } @@ -227,7 +240,7 @@ static void dequantize_mul_mat_vec_q2_k(const void *__restrict__ vx, // sum up partial sums and write back result #pragma unroll - for (int mask = WARP_SIZE / 2; mask > 0; mask >>= 1) { + for (int mask = WARP_32_SIZE / 2; mask > 0; mask >>= 1) { tmp += dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), tmp, mask); } @@ -346,7 +359,7 @@ static void dequantize_mul_mat_vec_q3_k(const void *__restrict__ vx, // sum up partial sums and write back result #pragma unroll - for (int mask = WARP_SIZE / 2; mask > 0; mask >>= 1) { + for (int mask = WARP_32_SIZE / 2; mask > 0; mask >>= 1) { tmp += dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), tmp, mask); } @@ -499,7 +512,7 @@ static void dequantize_mul_mat_vec_q4_k(const void *__restrict__ vx, // sum up partial sums and write back result #pragma unroll - for (int mask = WARP_SIZE / 2; mask > 0; mask >>= 1) { + for (int mask = WARP_32_SIZE / 2; mask > 0; mask >>= 1) { tmp += dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), tmp, mask); } @@ -633,7 +646,7 @@ static void dequantize_mul_mat_vec_q5_k(const void *__restrict__ vx, // sum up partial sums and write back result #pragma unroll - for (int mask = WARP_SIZE / 2; mask > 0; mask >>= 1) { + for (int mask = WARP_32_SIZE / 2; mask > 0; mask >>= 1) { tmp += dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), tmp, mask); } @@ -748,7 +761,7 @@ static void dequantize_mul_mat_vec_q6_k(const void * __restrict__ vx, const floa // sum up partial sums and write back result #pragma unroll - for (int mask = WARP_SIZE / 2; mask > 0; mask >>= 1) { + for (int mask = WARP_32_SIZE / 2; mask > 0; mask >>= 1) { tmp += dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), tmp, mask); } @@ -762,21 +775,31 @@ static void dequantize_mul_mat_vec_q6_k(const void * __restrict__ vx, const floa static void dequantize_mul_mat_vec_q4_0_sycl(const void *vx, const dfloat *y, float *dst, const int ncols, const int nrows, - dpct::queue_ptr stream) { + dpct::queue_ptr stream, int device_id) { GGML_ASSERT(ncols % GGML_SYCL_DMMV_X == 0); const int block_num_y = (nrows + GGML_SYCL_MMV_Y - 1) / GGML_SYCL_MMV_Y; // the number of rows may exceed maximum grid size in the y or z dimensions, use the x dimension instead const sycl::range<3> block_nums(1, 1, block_num_y); - const sycl::range<3> block_dims(1, GGML_SYCL_MMV_Y, WARP_SIZE); - { - dpct::has_capability_or_fail(stream->get_device(), - {sycl::aspect::fp16}); + dpct::has_capability_or_fail(stream->get_device(), {sycl::aspect::fp16}); + + if (ggml_sycl_info().hw_family(device_id) == SYCL_HW_FAMILY_INTEL_IGPU) { + // printf("dequantize_mul_mat_vec_q4_0_sycl warp_size=%d\n", WARP_32_SIZE); + const sycl::range<3> block_dims(1, GGML_SYCL_MMV_Y, WARP_32_SIZE); + stream->parallel_for( + sycl::nd_range<3>(block_nums * block_dims, block_dims), + [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(WARP_32_SIZE)]] { + dequantize_mul_mat_vec( + vx, y, dst, ncols, nrows, WARP_32_SIZE, item_ct1); + }); + } else { + // printf("dequantize_mul_mat_vec_q4_0_sycl warp_size=%d\n", WARP_SIZE); + const sycl::range<3> block_dims(1, GGML_SYCL_MMV_Y, WARP_SIZE); stream->parallel_for( sycl::nd_range<3>(block_nums * block_dims, block_dims), [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(WARP_SIZE)]] { dequantize_mul_mat_vec( - vx, y, dst, ncols, nrows, item_ct1); + vx, y, dst, ncols, nrows, WARP_SIZE, item_ct1); }); } } @@ -784,20 +807,27 @@ static void dequantize_mul_mat_vec_q4_0_sycl(const void *vx, const dfloat *y, static void dequantize_mul_mat_vec_q4_1_sycl(const void *vx, const dfloat *y, float *dst, const int ncols, const int nrows, - dpct::queue_ptr stream) { + dpct::queue_ptr stream, int device_id) { GGML_ASSERT(ncols % GGML_SYCL_DMMV_X == 0); const int block_num_y = (nrows + GGML_SYCL_MMV_Y - 1) / GGML_SYCL_MMV_Y; const sycl::range<3> block_nums(1, 1, block_num_y); - const sycl::range<3> block_dims(1, GGML_SYCL_MMV_Y, WARP_SIZE); - { - dpct::has_capability_or_fail(stream->get_device(), - {sycl::aspect::fp16}); + dpct::has_capability_or_fail(stream->get_device(), {sycl::aspect::fp16}); + if (ggml_sycl_info().hw_family(device_id) == SYCL_HW_FAMILY_INTEL_IGPU) { + const sycl::range<3> block_dims(1, GGML_SYCL_MMV_Y, WARP_32_SIZE); + stream->parallel_for( + sycl::nd_range<3>(block_nums * block_dims, block_dims), + [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(WARP_32_SIZE)]] { + dequantize_mul_mat_vec( + vx, y, dst, ncols, nrows, WARP_32_SIZE, item_ct1); + }); + } else { + const sycl::range<3> block_dims(1, GGML_SYCL_MMV_Y, WARP_SIZE); stream->parallel_for( sycl::nd_range<3>(block_nums * block_dims, block_dims), [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(WARP_SIZE)]] { dequantize_mul_mat_vec( - vx, y, dst, ncols, nrows, item_ct1); + vx, y, dst, ncols, nrows, WARP_SIZE, item_ct1); }); } } @@ -805,20 +835,27 @@ static void dequantize_mul_mat_vec_q4_1_sycl(const void *vx, const dfloat *y, static void dequantize_mul_mat_vec_q5_0_sycl(const void *vx, const dfloat *y, float *dst, const int ncols, const int nrows, - dpct::queue_ptr stream) { + dpct::queue_ptr stream, int device_id) { GGML_ASSERT(ncols % GGML_SYCL_DMMV_X == 0); const int block_num_y = (nrows + GGML_SYCL_MMV_Y - 1) / GGML_SYCL_MMV_Y; const sycl::range<3> block_nums(1, 1, block_num_y); - const sycl::range<3> block_dims(1, GGML_SYCL_MMV_Y, WARP_SIZE); - { - dpct::has_capability_or_fail(stream->get_device(), - {sycl::aspect::fp16}); + dpct::has_capability_or_fail(stream->get_device(), {sycl::aspect::fp16}); + if (ggml_sycl_info().hw_family(device_id) == SYCL_HW_FAMILY_INTEL_IGPU) { + const sycl::range<3> block_dims(1, GGML_SYCL_MMV_Y, WARP_32_SIZE); + stream->parallel_for( + sycl::nd_range<3>(block_nums * block_dims, block_dims), + [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(WARP_32_SIZE)]] { + dequantize_mul_mat_vec( + vx, y, dst, ncols, nrows, WARP_32_SIZE, item_ct1); + }); + } else { + const sycl::range<3> block_dims(1, GGML_SYCL_MMV_Y, WARP_SIZE); stream->parallel_for( sycl::nd_range<3>(block_nums * block_dims, block_dims), [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(WARP_SIZE)]] { dequantize_mul_mat_vec( - vx, y, dst, ncols, nrows, item_ct1); + vx, y, dst, ncols, nrows, WARP_SIZE, item_ct1); }); } } @@ -826,20 +863,27 @@ static void dequantize_mul_mat_vec_q5_0_sycl(const void *vx, const dfloat *y, static void dequantize_mul_mat_vec_q5_1_sycl(const void *vx, const dfloat *y, float *dst, const int ncols, const int nrows, - dpct::queue_ptr stream) { + dpct::queue_ptr stream, int device_id) { GGML_ASSERT(ncols % GGML_SYCL_DMMV_X == 0); const int block_num_y = (nrows + GGML_SYCL_MMV_Y - 1) / GGML_SYCL_MMV_Y; const sycl::range<3> block_nums(1, 1, block_num_y); - const sycl::range<3> block_dims(1, GGML_SYCL_MMV_Y, WARP_SIZE); - { - dpct::has_capability_or_fail(stream->get_device(), - {sycl::aspect::fp16}); + dpct::has_capability_or_fail(stream->get_device(), {sycl::aspect::fp16}); + if (ggml_sycl_info().hw_family(device_id) == SYCL_HW_FAMILY_INTEL_IGPU) { + const sycl::range<3> block_dims(1, GGML_SYCL_MMV_Y, WARP_32_SIZE); + stream->parallel_for( + sycl::nd_range<3>(block_nums * block_dims, block_dims), + [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(WARP_32_SIZE)]] { + dequantize_mul_mat_vec( + vx, y, dst, ncols, nrows, WARP_32_SIZE, item_ct1); + }); + } else { + const sycl::range<3> block_dims(1, GGML_SYCL_MMV_Y, WARP_SIZE); stream->parallel_for( sycl::nd_range<3>(block_nums * block_dims, block_dims), [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(WARP_SIZE)]] { dequantize_mul_mat_vec( - vx, y, dst, ncols, nrows, item_ct1); + vx, y, dst, ncols, nrows, WARP_SIZE, item_ct1); }); } } @@ -847,20 +891,27 @@ static void dequantize_mul_mat_vec_q5_1_sycl(const void *vx, const dfloat *y, static void dequantize_mul_mat_vec_q8_0_sycl(const void *vx, const dfloat *y, float *dst, const int ncols, const int nrows, - dpct::queue_ptr stream) { + dpct::queue_ptr stream, int device_id) { GGML_ASSERT(ncols % GGML_SYCL_DMMV_X == 0); const int block_num_y = (nrows + GGML_SYCL_MMV_Y - 1) / GGML_SYCL_MMV_Y; const sycl::range<3> block_nums(1, 1, block_num_y); - const sycl::range<3> block_dims(1, GGML_SYCL_MMV_Y, WARP_SIZE); - { - dpct::has_capability_or_fail(stream->get_device(), - {sycl::aspect::fp16}); + dpct::has_capability_or_fail(stream->get_device(), {sycl::aspect::fp16}); + if (ggml_sycl_info().hw_family(device_id) == SYCL_HW_FAMILY_INTEL_IGPU) { + const sycl::range<3> block_dims(1, GGML_SYCL_MMV_Y, WARP_32_SIZE); + stream->parallel_for( + sycl::nd_range<3>(block_nums * block_dims, block_dims), + [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(WARP_32_SIZE)]] { + dequantize_mul_mat_vec( + vx, y, dst, ncols, nrows, WARP_32_SIZE, item_ct1); + }); + } else { + const sycl::range<3> block_dims(1, GGML_SYCL_MMV_Y, WARP_SIZE); stream->parallel_for( sycl::nd_range<3>(block_nums * block_dims, block_dims), [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(WARP_SIZE)]] { dequantize_mul_mat_vec( - vx, y, dst, ncols, nrows, item_ct1); + vx, y, dst, ncols, nrows, WARP_SIZE, item_ct1); }); } } @@ -873,10 +924,10 @@ static void dequantize_mul_mat_vec_q2_K_sycl(const void *vx, const float *y, const int ny = 2; // very slightly faster than 1 even when K_QUANTS_PER_ITERATION = 2 const int block_num_y = (nrows + ny - 1) / ny; const sycl::range<3> block_nums(1, 1, block_num_y); - const sycl::range<3> block_dims(1, ny, WARP_SIZE); + const sycl::range<3> block_dims(1, ny, WARP_32_SIZE); stream->parallel_for( sycl::nd_range<3>(block_nums * block_dims, block_dims), - [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(WARP_SIZE)]] { + [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(WARP_32_SIZE)]] { dequantize_mul_mat_vec_q2_k(vx, y, dst, ncols, nrows, item_ct1); }); } @@ -889,10 +940,10 @@ static void dequantize_mul_mat_vec_q3_K_sycl(const void *vx, const float *y, const int ny = 2 / K_QUANTS_PER_ITERATION; const int block_num_y = (nrows + ny - 1) / ny; const sycl::range<3> block_nums(1, 1, block_num_y); - const sycl::range<3> block_dims(1, ny, WARP_SIZE); + const sycl::range<3> block_dims(1, ny, WARP_32_SIZE); stream->parallel_for( sycl::nd_range<3>(block_nums * block_dims, block_dims), - [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(WARP_SIZE)]] { + [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(WARP_32_SIZE)]] { dequantize_mul_mat_vec_q3_k(vx, y, dst, ncols, nrows, item_ct1); }); } @@ -905,10 +956,10 @@ static void dequantize_mul_mat_vec_q4_K_sycl(const void *vx, const float *y, const int ny = 2 / K_QUANTS_PER_ITERATION; const int block_num_y = (nrows + ny - 1) / ny; const sycl::range<3> block_nums(1, 1, block_num_y); - const sycl::range<3> block_dims(1, ny, WARP_SIZE); + const sycl::range<3> block_dims(1, ny, WARP_32_SIZE); stream->parallel_for( sycl::nd_range<3>(block_nums * block_dims, block_dims), - [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(WARP_SIZE)]] { + [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(WARP_32_SIZE)]] { dequantize_mul_mat_vec_q4_k(vx, y, dst, ncols, nrows, item_ct1); }); } @@ -918,10 +969,10 @@ static void dequantize_mul_mat_vec_q5_K_sycl(const void *vx, const float *y, const int nrows, dpct::queue_ptr stream) { GGML_ASSERT(ncols % QK_K == 0); - const sycl::range<3> block_dims(1, 1, WARP_SIZE); + const sycl::range<3> block_dims(1, 1, WARP_32_SIZE); stream->parallel_for( sycl::nd_range<3>(sycl::range<3>(1, 1, nrows) * block_dims, block_dims), - [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(WARP_SIZE)]] { + [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(WARP_32_SIZE)]] { dequantize_mul_mat_vec_q5_k(vx, y, dst, ncols, item_ct1); }); } @@ -934,10 +985,10 @@ static void dequantize_mul_mat_vec_q6_K_sycl(const void *vx, const float *y, const int ny = 2 / K_QUANTS_PER_ITERATION; const int block_num_y = (nrows + ny - 1) / ny; const sycl::range<3> block_nums(1, 1, block_num_y); - const sycl::range<3> block_dims(1, ny, WARP_SIZE); + const sycl::range<3> block_dims(1, ny, WARP_32_SIZE); stream->parallel_for( sycl::nd_range<3>(block_nums * block_dims, block_dims), - [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(WARP_SIZE)]] { + [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(WARP_32_SIZE)]] { dequantize_mul_mat_vec_q6_k(vx, y, dst, ncols, nrows, item_ct1); }); } @@ -976,19 +1027,19 @@ void ggml_sycl_op_dequantize_mul_mat_vec( switch (src0->type) { case GGML_TYPE_Q4_0: - dequantize_mul_mat_vec_q4_0_sycl(src0_dd_i, src1_dfloat, dst_dd_i, ne00, row_diff, stream); + dequantize_mul_mat_vec_q4_0_sycl(src0_dd_i, src1_dfloat, dst_dd_i, ne00, row_diff, stream, ctx.device); break; case GGML_TYPE_Q4_1: - dequantize_mul_mat_vec_q4_1_sycl(src0_dd_i, src1_dfloat, dst_dd_i, ne00, row_diff, stream); + dequantize_mul_mat_vec_q4_1_sycl(src0_dd_i, src1_dfloat, dst_dd_i, ne00, row_diff, stream, ctx.device); break; case GGML_TYPE_Q5_0: - dequantize_mul_mat_vec_q5_0_sycl(src0_dd_i, src1_dfloat, dst_dd_i, ne00, row_diff, stream); + dequantize_mul_mat_vec_q5_0_sycl(src0_dd_i, src1_dfloat, dst_dd_i, ne00, row_diff, stream, ctx.device); break; case GGML_TYPE_Q5_1: - dequantize_mul_mat_vec_q5_1_sycl(src0_dd_i, src1_dfloat, dst_dd_i, ne00, row_diff, stream); + dequantize_mul_mat_vec_q5_1_sycl(src0_dd_i, src1_dfloat, dst_dd_i, ne00, row_diff, stream, ctx.device); break; case GGML_TYPE_Q8_0: - dequantize_mul_mat_vec_q8_0_sycl(src0_dd_i, src1_dfloat, dst_dd_i, ne00, row_diff, stream); + dequantize_mul_mat_vec_q8_0_sycl(src0_dd_i, src1_dfloat, dst_dd_i, ne00, row_diff, stream, ctx.device); break; case GGML_TYPE_Q2_K: dequantize_mul_mat_vec_q2_K_sycl(src0_dd_i, src1_ddf_i, dst_dd_i, ne00, row_diff, stream); @@ -1006,7 +1057,7 @@ void ggml_sycl_op_dequantize_mul_mat_vec( dequantize_mul_mat_vec_q6_K_sycl(src0_dd_i, src1_ddf_i, dst_dd_i, ne00, row_diff, stream); break; case GGML_TYPE_F16: - convert_mul_mat_vec_f16_sycl(src0_dd_i, src1_dfloat, dst_dd_i, ne00, row_diff, stream); + convert_mul_mat_vec_f16_sycl(src0_dd_i, src1_dfloat, dst_dd_i, ne00, row_diff, stream, ctx.device); break; default: printf("ggml_sycl_op_dequantize_mul_mat_vec unsupported GGML_TYPE %d\n", src0->type); diff --git a/ggml/src/ggml-sycl/norm.cpp b/ggml/src/ggml-sycl/norm.cpp index 3ad1131d6bacc..ee632ac3b69c6 100644 --- a/ggml/src/ggml-sycl/norm.cpp +++ b/ggml/src/ggml-sycl/norm.cpp @@ -57,6 +57,7 @@ static void group_norm_f32(const float* x, float* dst, const int group_size, con const int nwarps = nthreads / WARP_SIZE; assert(nwarps % WARP_SIZE == 0); start += item_ct1.get_local_id(2); + int nreduce = nwarps / WARP_SIZE; if (end >= ne_elements) { end = ne_elements; @@ -87,7 +88,6 @@ static void group_norm_f32(const float* x, float* dst, const int group_size, con */ item_ct1.barrier(); tmp = 0.f; - int nreduce = nwarps / WARP_SIZE; for (size_t i = 0; i < nreduce; i += 1) { tmp += s_sum[lane_id + i * WARP_SIZE]; @@ -122,7 +122,11 @@ static void group_norm_f32(const float* x, float* dst, const int group_size, con better performance if there is no access to global memory. */ item_ct1.barrier(); - tmp = s_sum[lane_id]; + tmp = 0.f; + for (size_t i = 0; i < nreduce; i += 1) + { + tmp += s_sum[lane_id + i * WARP_SIZE]; + } tmp = warp_reduce_sum(tmp, item_ct1); } @@ -186,13 +190,15 @@ static void norm_f32_sycl(const float* x, float* dst, const int ncols, if (ncols < 1024) { const sycl::range<3> block_dims(1, 1, WARP_SIZE); stream->submit([&](sycl::handler& cgh) { + sycl::local_accessor s_sum_acc_ct1( + sycl::range<1>(32), cgh); cgh.parallel_for( sycl::nd_range<3>(sycl::range<3>(1, 1, nrows) * block_dims, block_dims), [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(WARP_SIZE)]] { norm_f32(x, dst, ncols, eps, item_ct1, - nullptr, WARP_SIZE); + s_sum_acc_ct1.get_pointer(), WARP_SIZE); }); }); } @@ -227,6 +233,8 @@ static void group_norm_f32_sycl(const float* x, float* dst, if (group_size < 1024) { const sycl::range<3> block_dims(1, 1, WARP_SIZE); stream->submit([&](sycl::handler& cgh) { + sycl::local_accessor s_sum_acc_ct1(sycl::range<1>(32), + cgh); const float eps_ct4 = eps; cgh.parallel_for( sycl::nd_range<3>(sycl::range<3>(1, 1, num_groups) * block_dims, @@ -235,7 +243,7 @@ static void group_norm_f32_sycl(const float* x, float* dst, [[intel::reqd_sub_group_size(WARP_SIZE)]] { group_norm_f32( x, dst, group_size, ne_elements, eps_ct4, item_ct1, - nullptr, WARP_SIZE); + s_sum_acc_ct1.get_pointer(), WARP_SIZE); }); }); } @@ -275,13 +283,15 @@ static void rms_norm_f32_sycl(const float* x, float* dst, const int ncols, if (ncols < 1024) { const sycl::range<3> block_dims(1, 1, WARP_SIZE); stream->submit([&](sycl::handler& cgh) { + sycl::local_accessor s_sum_acc_ct1(sycl::range<1>(32), + cgh); cgh.parallel_for( sycl::nd_range<3>(sycl::range<3>(1, 1, nrows) * block_dims, block_dims), [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(WARP_SIZE)]] { rms_norm_f32(x, dst, ncols, eps, item_ct1, - nullptr, WARP_SIZE); + s_sum_acc_ct1.get_pointer(), WARP_SIZE); }); }); } diff --git a/ggml/src/ggml-sycl/presets.hpp b/ggml/src/ggml-sycl/presets.hpp index c09c75dc7c73c..ca335d78a260e 100644 --- a/ggml/src/ggml-sycl/presets.hpp +++ b/ggml/src/ggml-sycl/presets.hpp @@ -17,6 +17,8 @@ #define GGML_SYCL_MAX_BUFFERS 256 #define WARP_SIZE GGML_SYCL_WARP_SIZE +#define WARP_32_SIZE 32 + #define MATRIX_ROW_PADDING 512 // last row of quant. matrices is a multiple of this to avoid out-of-bounds memory accesses #define SYCL_GELU_BLOCK_SIZE 256 @@ -62,4 +64,5 @@ static_assert(K_QUANTS_PER_ITERATION == 1 || K_QUANTS_PER_ITERATION == 2, "K_QUA #define MUL_MAT_SRC1_COL_STRIDE 128 + #endif // GGML_SYCL_PRESETS_HPP diff --git a/ggml/src/ggml-sycl/sycl_hw.cpp b/ggml/src/ggml-sycl/sycl_hw.cpp new file mode 100644 index 0000000000000..a9a216a4e90d2 --- /dev/null +++ b/ggml/src/ggml-sycl/sycl_hw.cpp @@ -0,0 +1,17 @@ +#include "sycl_hw.hpp" + +bool is_in_vector(const std::vector &vec, int item) { + return std::find(vec.begin(), vec.end(), item) != vec.end(); +} + +SYCL_HW_FAMILY get_device_family(sycl::device *device_ptr) { + auto id = device_ptr->get_info(); + auto id_prefix = id & 0xff00; + + if (is_in_vector(Xe_Iris_IDs, id_prefix) or is_in_vector(UHD_IDs, id_prefix)) { + return SYCL_HW_FAMILY_INTEL_IGPU; + } else { + std::cerr << "No support PCI_ID: " << std::hex << id << std::endl; + return SYCL_HW_FAMILY_UNKNOWN; + } +} \ No newline at end of file diff --git a/ggml/src/ggml-sycl/sycl_hw.hpp b/ggml/src/ggml-sycl/sycl_hw.hpp new file mode 100644 index 0000000000000..475bb194f678e --- /dev/null +++ b/ggml/src/ggml-sycl/sycl_hw.hpp @@ -0,0 +1,24 @@ +#ifndef SYCL_HW_HPP +#define SYCL_HW_HPP + +#include +#include +#include + + +#include + +// const int Xe_ARC[] = {0x5600, 0x4f}; +const std::vector Xe_Iris_IDs = {0x4900, 0xa700}; +const std::vector UHD_IDs = {0x4600}; + +enum SYCL_HW_FAMILY { + SYCL_HW_FAMILY_UNKNOWN = -1, + SYCL_HW_FAMILY_INTEL_IGPU = 0 +}; + +bool is_in_vector(std::vector &vec, int item); + +SYCL_HW_FAMILY get_device_family(sycl::device *device_ptr); + +#endif // SYCL_HW_HPP \ No newline at end of file