From 0bb6de915e652b486e5892ace511f2d95a5e338f Mon Sep 17 00:00:00 2001 From: Ramkumar Ramachandra Date: Sun, 19 Nov 2023 12:39:11 +0000 Subject: [PATCH] paper: tweak font sizes harder using anyfont; lmodern --- paper/msc.cls | 4 +--- paper/paper.tex | 11 ++++++----- 2 files changed, 7 insertions(+), 8 deletions(-) diff --git a/paper/msc.cls b/paper/msc.cls index d238cf3..c027fe1 100644 --- a/paper/msc.cls +++ b/paper/msc.cls @@ -1,5 +1,5 @@ \NeedsTeXFormat{LaTeX2e} -\ProvidesClass{CUP-MSC-LaTeX-V1}[2018/08/09 v1.0 CUP MSC LaTeX document class] +\ProvidesClass{msc}[2018/08/09 v1.0 CUP MSC LaTeX document class] % \newif\ifOA\global\OAfalse% \newif\iflsans\global\lsansfalse @@ -702,7 +702,6 @@ %%%%%%%%%%%%%%%%%%%%%%%%%%%%%Standard Packages - \usepackage{etex} \usepackage{amsthm} \usepackage{soul} \usepackage{calc} @@ -3784,7 +3783,6 @@ % \def\endash{--} % -%\RequirePackage{CUP-XML-Inputs}% \ifonline \usepackage{hyperref}% diff --git a/paper/paper.tex b/paper/paper.tex index f7b0321..9f05037 100644 --- a/paper/paper.tex +++ b/paper/paper.tex @@ -1,8 +1,9 @@ \documentclass{msc} -\usepackage{amsmath, amssymb, mathrsfs, wasysym, tikz, tikz-cd, mathpazo, xargs, environ, multirow, float, tabularx, caption, bookmark, booktabs, makecell, colortbl, minted, art.cls/colorpal, art.cls/ct, art.cls/sset, art.cls/lim, art.cls/joinargs} - +\usepackage{amsmath, amssymb, mathrsfs, wasysym, tikz, tikz-cd, lmodern, mathpazo, t1enc, anyfontsize, xargs, environ, multirow, float, tabularx, caption, bookmark, booktabs, makecell, colortbl, minted, art.cls/colorpal, art.cls/ct, art.cls/sset, art.cls/lim, art.cls/joinargs} \usepackage[prefix=bonak]{art.cls/xkeymask} + +% Use the patterns library to draw the cubes figure \usetikzlibrary{patterns} % Magic with xkeyval to go over the 9-argument limit of LaTeX @@ -145,8 +146,8 @@ % The eqntable environment \newcolumntype{Y}{>{\centering\arraybackslash}X} \NewEnviron{eqntable}[1]{ - \scriptsize - \begin{tabularx}{0.93\linewidth}{ + \fontsize{7.2}{9}\selectfont + \begin{tabularx}{0.94\linewidth}{ @{} >{$}l<{$} >{$}c<{$} @@ -469,7 +470,7 @@ \section{Relating to parametricity\label{sec:rel-param}} \ldots \end{align*} -In there, the process of construction of the type of $X_1$ from that of $X_0$, and from the type of $X_2$ to that of $X_1$, and so on, is similar to iteratively applying a binary parametricity translation. The binary parametricity which we consider is composed with the diagonal on types and interprets a type $A$ by a family $A_\kstar$ over $A \times A$, what can be seen as a graph whose vertices are in $A$. To each type constructor is thus associated the construction of a graph. To start with, the type of types $\U$ is interpreted as the family of type of families ${\U}_\kstar$, which takes $A_L$ and $A_R$ in $\U$ and returns the type $A_L \times A_R \rightarrow \U$ of families over $A_L$ and $A_R$. Also, for $A$ interpreted by $A_\kstar$ and $B$ interpreted by $B_\kstar$, a dependent function type $\Pi a: A.\, B$ is interpreted as the graph $(\Pi a: A.\, B)_\kstar$ that takes two functions $f_L$ and $f_R$ of type $\Pi a: A.\, B$, and expresses that these functions map related arguments in $A$ to related arguments in $B$: +In there, the process of construction of the type of $X_1$ from that of $X_0$, and from the type of $X_2$ to that of $X_1$, and so on, is similar to iteratively applying a binary parametricity translation. The binary parametricity which we consider interprets a type $A$ by a family $A_\kstar$ over $A \times A$, what can be seen as a graph whose vertices are in $A$. To each type constructor is thus associated the construction of a graph. To start with, the type of types $\U$ is interpreted as the family of type of families ${\U}_\kstar$, which takes $A_L$ and $A_R$ in $\U$ and returns the type $A_L \times A_R \rightarrow \U$ of families over $A_L$ and $A_R$. Also, for $A$ interpreted by $A_\kstar$ and $B$ interpreted by $B_\kstar$, a dependent function type $\Pi a: A.\, B$ is interpreted as the graph $(\Pi a: A.\, B)_\kstar$ that takes two functions $f_L$ and $f_R$ of type $\Pi a: A.\, B$, and expresses that these functions map related arguments in $A$ to related arguments in $B$: \begin{align*} (\Pi a: A.\, B)_\kstar(f_L,f_R) \; \defeq \; \Pi (a_L,a_R): (A \times A).\, (A_\kstar(a_L,a_R)\,\rightarrow B_\kstar(f_L(a_L),f_R(a_R))) \end{align*}