-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcreate_sprite_image.py
35 lines (27 loc) · 1.12 KB
/
create_sprite_image.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
import os
import matplotlib.pyplot as plt
import numpy as np
import tensorflow as tf
from model.utils import *
from model.input_fn import get_dataset, parse_function, train_preprocess, read_image
from config import *
test_dir = os.path.join(DATASET_DIR_PATH,"images_evaluation")
sprite_filename = 'experiments/ominiglot_sprite.png'
json_path = os.path.join("experiments/batch_hard/params.json")
params = Params(json_path)
params.image_size = 28
with tf.Session() as sess:
# TODO (@omoindrot): remove the hard-coded 10000
# Obtain the test labels
dataset = get_dataset(test_dir, params)
dataset = dataset.map((lambda x,y: read_image(x,y, params)), num_parallel_calls=4)
dataset = dataset.batch(params.eval_size)
iterator = dataset.make_one_shot_iterator()
data_X, data_y = iterator.get_next()
X = sess.run(data_X)
print("X.shape", X.shape)
to_visualise = vector_to_matrix_mnist(X, params.image_size, params.image_size)
to_visualise = invert_grayscale(to_visualise)
sprite_image = create_sprite_image(to_visualise)
plt.imsave(sprite_filename,sprite_image,cmap='gray')
plt.imshow(sprite_image,cmap='gray')