forked from wcs211/BEM-3D-Python
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathswimmer_subclasses.py
617 lines (499 loc) · 27.6 KB
/
swimmer_subclasses.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
# -*- coding: utf-8 -*-
"""Module for the Body, Edge, and Wake classes."""
import numpy as np
from functions_general import point_vectors, panel_vectors
import parameter_classes as PC
class Edge(object):
"""An edge doublet panel located where separation occurs on a body.
Attributes:
N: Number of edge panels (just one).
CE: Constant that determines the length of the edge panel.
x, z: X- and Z-coordinates of the edge panel endpoints.
mu: Doublet strength of the edge panel.
gamma: Circulation at the edge panel endpoints.
"""
def __init__(self, CE, N_SPAN):
"""Inits Edge with all necessary parameters."""
self.N = 1
self.CE = CE
self.x = np.zeros((self.N+1,N_SPAN))
self.y = np.zeros((self.N+1,N_SPAN))
self.z = np.zeros((self.N+1,N_SPAN))
self.mu = np.zeros((self.N, N_SPAN))
self.gamma = np.zeros((self.N+1,N_SPAN))
class Wake(object):
"""A chain of wake doublet panels.
Attributes:
N: Number of wake panels.
x, z: X- and Z-coordinates of the wake panel endpoints.
mu: Doublet strengths of the wake panels.
gamma: Circulations at the wake panel endpoints.
"""
def __init__(self, N, N_SPAN):
"""Inits Wake with all necessary parameters."""
self.N = N
self.x = np.zeros((N+1, N_SPAN))
self.y = np.zeros((N+1, N_SPAN))
self.z = np.zeros((N+1, N_SPAN))
self.mu = np.zeros((N, N_SPAN))
self.gamma = np.zeros((N+1, N_SPAN))
class Body(object):
"""An arrangement of source/doublet panels in the shape of a swimming body.
Attributes:
N: Number of body panels.
S: Parameter for shifting collocation points into the body.
BF: A collection of various body-frame coordinates.
AF: A collection of various absolute-frame coordinates.
MP: A collection of parameters describing the motion of the swimmer.
V0: The free-stream velocity (included in MP as well).
vx, vz: X- and Z-components of body-frame surface velocities.
sigma: Source strengths of the body panels.
phi_s: Matrix of body source panel influences on the body.
phi_db: Matrix of body doublet panel influences on the body.
phi_dw: Matrix of edge and wake panel influences on the body.
mu: Doublet strengths of the body panels.
gamma: Circulations at the body panel endpoints.
p: Surface pressures of the body panels.
cp: Surface pressure coefficients of the body panels.
mu_past: mu arrays from previous time steps for backwards differencing.
"""
# N_CHORD, N_SPAN, S, BodyFrameCoordinates, MotionParameters
def __init__(self, N_CHORD, N_SPAN, S, BodyFrameCoordinates, MotionParameters):
"""Inits Body with all necessary parameters."""
self.N_CHORD = N_CHORD
self.N_SPAN = N_SPAN
self.N = 4. * N_CHORD * N_SPAN
self.S = S
# Body-frame panel coordinates:
# x, z, x_col, z_col
self.BF = BodyFrameCoordinates
# Initialize absolute-frame panel coordinates:
# x, z, x_col, z_col, x_mid, z_mid, x_neut, z_neut
self.AF = PC.BodyAFC(self.N_CHORD, self.N_SPAN)
# Prescribed motion
self.MP = MotionParameters
self.V0 = MotionParameters.V0
self.vx = np.zeros((2 * self.N_CHORD - 2, self.N_SPAN - 1))
self.vy = np.zeros((2 * self.N_CHORD - 2, self.N_SPAN - 1))
self.vz = np.zeros((2 * self.N_CHORD - 2, self.N_SPAN - 1))
self.sigma = np.zeros((2 * self.N_CHORD - 2, self.N_SPAN - 1))
self.phi_s = np.zeros((2 * self.N_CHORD - 2, self.N_SPAN - 1))
self.phi_db = np.zeros((2 * self.N_CHORD - 2, self.N_SPAN - 1))
self.phi_dw = np.zeros((2 * self.N_CHORD - 2, self.N_SPAN - 1))
self.mu = np.zeros((2 * self.N_CHORD - 2, self.N_SPAN - 1))
self.gamma = np.zeros((2 * N_CHORD - 1, N_SPAN))
self.p = np.zeros((2 * self.N_CHORD - 2, self.N_SPAN - 1))
self.cp = np.zeros((2 * self.N_CHORD - 2, self.N_SPAN - 1))
self.mu_past = np.zeros((2 * self.N_CHORD - 2, self.N_SPAN - 1, 3))
self.Cf = 0.
self.Cl = 0.
self.Ct = 0.
self.Cpow = 0.
@classmethod
def from_van_de_vooren(cls, GeoVDVParameters, MotionParameters):
"""Creates a Body object based on a Van de Vooren airfoil geometry.
MotionParameters are unused here, just getting passed through for the
creation of the Body.
Args:
GeoVDVParameters: A collection of parameters for constructing a
Van de Vooren geometry. (N, S, C, K, EPSILON)
MotionParameters: Motion parameters of the swimmer.
Returns:
A Body object with the Van de Vooren airfoil geometry.
"""
N_CHORD = GeoVDVParameters.N_CHORD
N_SPAN = GeoVDVParameters.N_SPAN
S = GeoVDVParameters.S
C = GeoVDVParameters.C
SPAN = GeoVDVParameters.SPAN
K = GeoVDVParameters.K
EPSILON = GeoVDVParameters.EPSILON
# Defining Chord length function
C = C * np.ones(N_SPAN)
# Initialize bottom and top x and z coordinates and parameters
A = np.zeros((N_CHORD, N_SPAN))
R1 = np.zeros((N_CHORD, N_SPAN))
R2 = np.zeros((N_CHORD, N_SPAN))
THETA1 = np.zeros((N_CHORD, N_SPAN))
THETA2 = np.zeros((N_CHORD, N_SPAN))
x_body = np.zeros((N_CHORD,N_SPAN))
x = np.zeros((2*N_CHORD-1, N_SPAN))
y = np.zeros((2*N_CHORD-1, N_SPAN))
z = np.zeros((2*N_CHORD-1, N_SPAN))
z_top = np.zeros((N_CHORD, N_SPAN))
z_bot = np.zeros((N_CHORD, N_SPAN))
x_mid = np.zeros((2 * N_CHORD - 2, N_SPAN - 1))
y_mid = np.zeros((2 * N_CHORD - 2, N_SPAN - 1))
z_mid = np.zeros((2 * N_CHORD - 2, N_SPAN - 1))
# Stepping through each spanwise position to calculate the positions of
# the fluke neutral plane at the given time step.
for i in xrange(N_SPAN):
A[:,i] = C[i]*((1+EPSILON)**(K-1))*(2**(-K))
THETA = np.linspace(0,np.pi,N_SPAN)
R1[:,i] = np.sqrt((A[:,i]*np.cos(THETA)-A[:,i])**2+(A[:,i]**2)*np.sin(THETA)**2)
R2[:,i] = np.sqrt((A[:,i]*np.cos(THETA)-EPSILON*A[:,i])**2+(A[:,i]**2)*np.sin(THETA)**2)
THETA1[:,i] = np.arctan2((A[:,i]*np.sin(THETA)) , (A[:,i]*np.cos(THETA)-A[:,i]))
THETA2[:,i] = np.arctan2(A[:,i]*np.sin(THETA) ,(A[:,i]*np.cos(THETA)-EPSILON*A[:,i]))
x_body[:,i] = ((R1[:,i]**K)/(R2[:,i]**(K-1)))*(np.cos(K*THETA1[:,i])*np.cos((K-1)*THETA2[:,i]) + np.sin(K*THETA1[:,i])*np.sin((K-1)*THETA2[:,i]))
z_top[:,i] = ((R1[:,i]**K)/(R2[:,i]**(K-1)))*(np.sin(K*THETA1[:,i])*np.cos((K-1)*THETA2[:,i]) - np.cos(K*THETA1[:,i])*np.sin((K-1)*THETA2[:,i]))
z_bot[:,i] = -((R1[:,i]**K)/(R2[:,i]**(K-1)))*(np.sin(K*THETA1[:,i])*np.cos((K-1)*THETA2[:,i]) - np.cos(K*THETA1[:,i])*np.sin((K-1)*THETA2[:,i]))
x_body[:,i] = x_body[:,i]-x_body[-1,i] # Carrying the leading edge to the origin
x_body[0,i] = C[i]
z_top[0,i] = 0.
z_bot[0,i] = 0.
z_bot[-1,i] = 0.
# Merge top and bottom surfaces together
x[:,i] = np.hstack((x_body[:,i] , x_body[-2::-1,i]))
z[:,i] = np.hstack((z_bot[:,i] , z_top[-2::-1,i]))
for i in xrange(2*N_CHORD-1):
y[i,:] = np.linspace(0.,SPAN,N_SPAN)
for i in xrange(N_SPAN-2):
x_mid[:,i] = ((x[1:,i] + x[:-1,i])/2)
y_mid[:,i] = ((y[1:,i] + y[:-1,i])/2)
z_mid[:,i] = ((z[1:,i] + z[:-1,i])/2)
BodyFrameCoordinates = PC.BodyBFC(x, y, z, x_mid, y_mid, z_mid)
return Body(N_CHORD, N_SPAN, S, BodyFrameCoordinates, MotionParameters)
@classmethod
#Flat plate geometry
def flat_plate(cls, GeoFPParameters, MotionParameters):
N_CHORD = GeoFPParameters.N_CHORD
N_SPAN = GeoFPParameters.N_SPAN
S = GeoFPParameters.S
C = GeoFPParameters.C
SPAN = GeoFPParameters.SPAN
D = GeoFPParameters.D
# Defining mid-chord line
MC = 0.5 * C * np.ones(N_SPAN)
# Defining Chord length function
C = C * np.ones(N_SPAN)
# Defining Leading and Trailing Edge Line
TE = MC + 0.5 * C
LE = MC - 0.5 * C
# Initialize bottom and top x and z coordinates
xb = np.zeros((N_CHORD, N_SPAN))
xt = np.zeros((N_CHORD, N_SPAN))
zb = np.zeros((N_CHORD, N_SPAN))
zt = np.zeros((N_CHORD, N_SPAN))
x = np.zeros((2 * N_CHORD - 1, N_SPAN))
y = np.zeros((2 * N_CHORD - 1, N_SPAN))
z = np.zeros((2 * N_CHORD - 1, N_SPAN))
x_mid = np.zeros((2 * N_CHORD - 2, N_SPAN - 1))
y_mid = np.zeros((2 * N_CHORD - 2, N_SPAN - 1))
z_mid = np.zeros((2 * N_CHORD - 2, N_SPAN - 1))
oLE = np.zeros(N_SPAN)
oTE = np.zeros(N_SPAN)
for i in xrange(N_SPAN):
# Create bottom x-corrdinates
start = 0.
stop = np.pi
step = np.copy(N_CHORD)
theta = np.linspace(start,stop,step)
xb[:,i] = 0.5 * (C[i] * np.cos(theta) + C[i])
# Create top x-corrdinates
start = np.pi
stop = 0.
step = np.copy(N_CHORD)
theta = np.linspace(start,stop,step)
xt[:,i] = 0.5 * (C[i] * np.cos(theta) + C[i])
# Create bottom and top z-coordinates
zb[:,i] = -0.5 * D * np.ones(N_CHORD)
zt[:,i] = 0.5 * D * np.ones(N_CHORD)
# LE and TE circle origins (z is assumed to be zero)
oLE[i] = 0.5 * D
oTE[i] = C[i] - 0.5 * D
# Calculate new theta positions for points on the rounded ends
count1 = np.shape(xb[xb[:,i]>=oTE[i],i])[0]
count2 = np.shape(xb[xb[:,i]<=oLE[i],i])[0]
count3 = np.shape(xt[xt[:,i]<=oLE[i],i])[0]
count4 = np.shape(xt[xt[:,i]>=oTE[i],i])[0]
# Determine angular new positions along the rounded ends
thetab = np.linspace(0,np.pi,count1+count2).T
thetat = np.linspace(np.pi,2*np.pi,count3+count4).T
# Calculate transformed leading and trailing edge points
x1 = oTE[i] + 0.5 * D * np.cos(thetab[0:count1])
z1 = 0. - 0.5 * D * np.sin(thetab[0:count1])
x2 = oLE[i] + 0.5 * D * np.cos(thetab[-1:-1-count1+1:-1])
z2 = 0. - 0.5 * D * np.sin(thetab[-1:-1-count1+1:-1])
x3 = oLE[i] + 0.5 * D * np.cos(thetat[0:count3])
z3 = 0. - 0.5 * D * np.sin(thetat[0:count3])
x4 = oTE[i] + 0.5 * D * np.cos(thetat[-1:-1-count3+1:-1])
z4 = 0. - 0.5 * D * np.sin(thetat[-1:-1-count3+1:-1])
# Replace x transformed points
xb[:count1,i] = x1
xb[-1:-1-count2+1:-1,i] = x2
xt[:count3,i] = x3
xt[-1:-1-count4+1:-1,i] = x4
# Replace z transformed points
zb[:count1,i] = z1
zb[-1:-1-count2+1:-1,i] = z2
zt[:count3,i] = z3
zt[-1:-1-count4+1:-1,i] = z4
# Make sure LE and TE points are correctly enforced (no round-off error)
zb[0,i] = 0.
zt[0,i] = 0.
zb[-1,i] = 0.
# Merge top and bottom surfaces together
x[:,i] = np.hstack((xb[:,i] , xb[-2::-1,i]))
z[:,i] = np.hstack((zb[:,i] , zt[-2::-1,i]))
# Shift points to correct LE position
x[:,i] += LE[i]
# Create top y-corrdinates
for i in xrange(2 * N_CHORD - 1):
y[i,:] = np.linspace(0., SPAN, N_SPAN)
# Define panel mid-points
for i in xrange(N_SPAN - 2):
x_mid[:,i] = 0.25 * (x[1:,i] + x[:-1,i] + x[1:,i+1] + x[:-1,i+1])
y_mid[:,i] = 0.25 * (y[1:,i] + y[:-1,i] + y[1:,i+1] + y[:-1,i+1])
z_mid[:,i] = 0.25 * (z[1:,i] + z[:-1,i] + z[1:,i+1] + z[:-1,i+1])
BodyFrameCoordinates = PC.BodyBFC(x, y, z, x_mid, y_mid, z_mid)
return Body(N_CHORD, N_SPAN, S, BodyFrameCoordinates, MotionParameters)
@classmethod
#Tear-drop geometry
def tear_drop(cls, GeoTDParameters, MotionParameters):
N_CHORD = GeoTDParameters.N_CHORD
N_SPAN = GeoTDParameters.N_SPAN
S = GeoTDParameters.S
C = GeoTDParameters.C
SPAN = GeoTDParameters.SPAN
D = GeoTDParameters.D
# Defining Chord length function
C = C * np.ones(N_SPAN)
# Initialize bottom and top x and z coordinates
xb = np.zeros((N_CHORD, N_SPAN))
xt = np.zeros((N_CHORD, N_SPAN))
x_c = np.zeros((N_CHORD, N_SPAN))
xb1 = np.zeros((N_SPAN))
xb2 = np.zeros((N_SPAN))
zb = np.zeros((N_CHORD, N_SPAN))
zt = np.zeros((N_CHORD, N_SPAN))
x = np.zeros((2 * N_CHORD - 1, N_SPAN))
y = np.zeros((2 * N_CHORD - 1, N_SPAN))
z = np.zeros((2 * N_CHORD - 1, N_SPAN))
x_mid = np.zeros((2 * N_CHORD - 2, N_SPAN - 1))
y_mid = np.zeros((2 * N_CHORD - 2, N_SPAN - 1))
z_mid = np.zeros((2 * N_CHORD - 2, N_SPAN - 1))
# Stepping through each spanwise position to calculate the positions of
# the fluke neutral plane at the given time step.
for i in xrange(N_SPAN):
xb[:,i] = np.linspace(np.pi,0.,N_CHORD)
xt[:,i] = np.linspace(0.,np.pi,N_CHORD)
# Slopes and intersects for the line segments
m = -D/2/(C[i] - D/2)
b = D/2 + D**2/4/(C[i] - D/2)
# Tear drop shape equation.
x_c[:,i] = 0.5 * (1 - np.cos(xb[:,i]))
xb[:,i] = x_c[:,i] * C[i]
xb1 = xb[xb[:,i] <= D/2]
xb2 = xb[xb[:,i] > D/2]
zb2 = -m * xb2[:,i] - b
zb1 = -np.sqrt((D/2)**2 - (xb1[:,i] - D/2)**2)
zb[:,i] = np.hstack((zb2, zb1))
# Tear drop shape equation.
x_c[:,i] = 0.5 * (1 - np.cos(xt[:,i]))
xt[:,i] = x_c[:,i] * C[i]
xt1 = xt[xt[:,i] <= D/2]
xt2= xt[xt[:,i] > D/2]
zt1 = np.sqrt((D/2)**2 - (xt1[:,i] - D/2)**2)
zt2 = m * xt2[:,i] + b
zt[:,i] = np.hstack((zt1, zt2))
zb[0,i] = 0.
zt[0,i] = 0.
zb[-1,i] = 0.
# Merge top and bottom surfaces together
x[:,i] = np.hstack((xb[:,i] , xt[1:,i]))
z[:,i] = np.hstack((zb[:,i] , zt[1:,i]))
for i in xrange(2*N_CHORD-1):
y[i,:] = np.linspace(0.,SPAN,N_SPAN)
for i in xrange(N_SPAN-2):
x_mid[:,i] = ((x[1:,i] + x[:-1,i])/2)
y_mid[:,i] = ((y[1:,i] + y[:-1,i])/2)
z_mid[:,i] = ((z[1:,i] + z[:-1,i])/2)
BodyFrameCoordinates = PC.BodyBFC(x, y, z, x_mid, y_mid, z_mid)
return Body(N_CHORD, N_SPAN, S, BodyFrameCoordinates, MotionParameters)
def neutral_plane(self, x, y, T, THETA, HEAVE, DSTEP1=0, DSTEP2=0, DSTEP3=0):
"""Finds a body's neutral plane for a given time.
The neutral plane is the plane which coincides with the z=0 plane and
divides the symmetric body into two. CURRENTLY PITCHING MOTION ONLY.
The plane that it finds is in an absolute frame of reference.
Args:
x: A 2D array of fin-frame x-coordinates to use as reference points.
Each column is a chord cross section and each row is a span cross section
DSTEP: Small incremental distance offset (intended for differencing).
T: Time of the current step.
THETA: Current pitching angle.
Returns:
x_neut, y_neut and z_neut:
X-Y and Z-coordinates of the neutral plane points.
"""
X0 = self.MP.X0
Y0 = self.MP.Y0
Z0 = self.MP.Z0
V0 = self.MP.V0
##Neutral plane positions(x_neut y_neut z_neut) are going to be
##set according to the type of the motion.
x_neut = X0 + (x+DSTEP1)*np.cos(THETA) + V0*T
y_neut = Y0 + y+DSTEP2
z_neut = Z0 + (x+DSTEP3)*np.sin(THETA) + HEAVE
return(x_neut, y_neut, z_neut)
def panel_positions(self, DSTEP1, DSTEP2, DSTEP3, T, THETA, HEAVE):
"""Updates all the absolute-frame coordinates of the body.
Args:
DSTEP: Small incremental distance to pass into neutral_plane().
T: Time of current step.
THETA: Current pitching angle.
"""
# Nc = int(0.5*(self.BF.x.shape[0]-1))
Nc = self.BF.x.shape[0]
Ns = self.BF.x.shape[1]
bfx = self.BF.x
bfy = self.BF.y #No y information coming from the geometry class yet
bfz = self.BF.z
bfz_col = self.BF.z_mid
V0 = self.V0 # Used only for x_le
(x_neut, y_neut, z_neut) = self.neutral_plane(bfx, bfy, T, THETA, HEAVE)
# Infinitesimal differences on the neutral axis to calculate the tangential and normal vectors
v1 = (xdp_y, ydp_y, zdp_y) = self.neutral_plane(bfx, bfy, T, THETA, HEAVE, 0, DSTEP2, DSTEP3)
v2 = (xdm_y, ydm_y, zdm_y) = self.neutral_plane(bfx, bfy, T, THETA, HEAVE, 0, -DSTEP2, -DSTEP3)
v3 = (xdp_x, ydp_x, zdp_x) = self.neutral_plane(bfx, bfy, T, THETA, HEAVE, DSTEP1, 0, 0)
v4 = (xdm_x, ydm_x, zdm_x) = self.neutral_plane(bfx, bfy, T, THETA, HEAVE, -DSTEP1, 0, 0)
# Absolute-frame panel endpoint positions for time t
afx = x_neut + point_vectors(Nc, Ns, v1,v2,v3,v4)[0]*bfz
afy = y_neut + point_vectors(Nc, Ns, v1,v2,v3,v4)[1]*bfz
afz = z_neut + point_vectors(Nc, Ns, v1,v2,v3,v4)[2]*bfz
# Absolute-frame panel midpoint positions
x_mid = (afx[1:,:-1]+afx[:-1,:-1])/2
y_mid = (afy[1:,:-1]+afy[:-1,:-1])/2
z_mid = (afz[1:,:-1]+afz[:-1,:-1])/2
# Collocation points are the points where impermeable boundary condition is forced
# They should be shifted inside or outside of the boundary depending on the dirichlet or neumann condition
# Shifting surface collocation points some percent of the height from the neutral axis
# Normal vectors point outward but positive S is inward, so the shift must be subtracted from the panel midpoints
afx_col = x_mid - self.S*panel_vectors(bfx, bfy, bfz)[0]*np.absolute(bfz_col)
afy_col = y_mid - self.S*panel_vectors(bfy, bfy, bfz)[1]*np.absolute(bfz_col)
afz_col = z_mid - self.S*panel_vectors(bfz, bfy, bfz)[2]*np.absolute(bfz_col)
self.AF.x = afx
self.AF.y = afy
self.AF.z = afz
self.AF.x_col = afx_col
self.AF.y_col = afy_col
self.AF.z_col = afz_col
self.AF.x_mid[:,:,0] = x_mid
self.AF.y_mid[:,:,0] = y_mid
self.AF.z_mid[:,:,0] = z_mid
self.AF.x_neut = x_neut
self.AF.y_neut = y_neut
self.AF.z_neut = z_neut
# Location of leading edge (currently pitching motion only)
self.AF.x_le = V0*T
self.AF.y_le = 0
self.AF.z_le = HEAVE
def fsi_panel_positions(self, FSI, T, THETA, HEAVE):
self.AF.x = self.AF.x + (FSI.fluidNodeDispl[:,0] - FSI.fluidNodeDisplOld[:,0])
self.AF.z = self.AF.z + (FSI.fluidNodeDispl[:,1] - FSI.fluidNodeDisplOld[:,1])
self.AF.x_mid[0,:] = (self.AF.x[:-1] + self.AF.x[1:])/2
self.AF.z_mid[0,:] = (self.AF.z[:-1] + self.AF.z[1:])/2
self.BF.x = (self.AF.x - self.AF.x_le) * np.cos(-1*THETA) - (self.AF.z - self.AF.z_le) * np.sin(-1*THETA)
self.BF.z = (self.AF.z - self.AF.z_le) * np.cos(-1*THETA) + (self.AF.x - self.AF.x_le) * np.sin(-1*THETA)
self.BF.x_col = ((self.BF.x[1:] + self.BF.x[:-1])/2)
self.BF.z_col = ((self.BF.z[1:] + self.BF.z[:-1])/2)
(self.AF.x_neut, self.AF.z_neut) = self.neutral_axis(self.BF.x, T, THETA, HEAVE)
self.AF.x_col = self.AF.x_mid[0,:] - self.S*panel_vectors(self.AF.x, self.AF.z)[2]*np.absolute(self.BF.z_col)
self.AF.z_col = self.AF.z_mid[0,:] - self.S*panel_vectors(self.AF.x, self.AF.z)[3]*np.absolute(self.BF.z_col)
def surface_kinematics(self, DSTEP1, DSTEP2, DSTEP3, TSTEP, THETA_MINUS, THETA_PLUS, HEAVE_MINUS, HEAVE_PLUS, DEL_T, T, i):
"""Calculates the body-frame surface velocities of body panels.
Also finds the body panel source strengths based on these surface
velocities.
Args:
DSTEP, TSTEP: Incremental distance/time passed into neutral_axis().
DEL_T: Time step length.
T: Time of current step.
i: Time step number.
THETA_MINUS: Pitching angle minus a small time difference (TSTEP)
THETA_PLUS: Pitching angle plus a small time difference (TSTEP)
"""
Nc = self.BF.x_mid.shape[0]
Ns = self.BF.x_mid.shape[1]
if i == 0:
x_col = self.BF.x_mid
y_col = self.BF.y_mid
z_col = self.BF.z_mid
# Panel midpoint velocity calculations
# Calculating the surface positions at tplus(tp) and tminus(tm)
(xtpneut, ytpneut, ztpneut) = self.neutral_plane(x_col, y_col, T, THETA_PLUS, HEAVE_PLUS, 0, 0, 0)
(xtpdp_y, ytpdp_y, ztpdp_y) = self.neutral_plane(x_col, y_col, T, THETA_PLUS, HEAVE_PLUS, 0, DSTEP2, DSTEP3)
(xtpdp_x, ytpdp_x, ztpdp_x) = self.neutral_plane(x_col, y_col, T, THETA_PLUS, HEAVE_PLUS, DSTEP1, 0, 0)
(xtpdm_y, ytpdm_y, ztpdm_y) = self.neutral_plane(x_col, y_col, T, THETA_PLUS, HEAVE_PLUS, 0, -DSTEP2, -DSTEP3)
(xtpdm_x, ytpdm_x, ztpdm_x) = self.neutral_plane(x_col, y_col, T, THETA_PLUS, HEAVE_PLUS, -DSTEP1, 0, 0)
(xtmneut, ytmneut, ztmneut) = self.neutral_plane(x_col, y_col, T, THETA_MINUS, HEAVE_MINUS, 0, 0, 0)
(xtmdp_y, ytmdp_y, ztmdp_y) = self.neutral_plane(x_col, y_col, T, THETA_MINUS, HEAVE_MINUS, 0, DSTEP2, DSTEP3)
(xtmdp_x, ytmdp_x, ztmdp_x) = self.neutral_plane(x_col, y_col, T, THETA_MINUS, HEAVE_MINUS, DSTEP1, 0, 0)
(xtmdm_y, ytmdm_y, ztmdm_y) = self.neutral_plane(x_col, y_col, T, THETA_MINUS, HEAVE_MINUS, 0, -DSTEP2, -DSTEP3)
(xtmdm_x, ytmdm_x, ztmdm_x) = self.neutral_plane(x_col, y_col, T, THETA_MINUS, HEAVE_MINUS, -DSTEP1, 0, 0)
# Displaced airfoil's panel midpoints for times tplus(tp) and tminus(tm)
xctp = xtpneut + point_vectors(Nc, Ns, (xtpdp_y, ytpdp_y, ztpdp_y), (xtpdm_y, ytpdm_y, ztpdm_y), (xtpdp_x, ytpdp_x, ztpdp_x), (xtpdm_x, ytpdm_x, ztpdm_x))[0]*z_col
xctm = xtmneut + point_vectors(Nc, Ns, (xtmdp_y, ytmdp_y, ztmdp_y), (xtmdm_y, ytmdm_y, ztmdm_y), (xtmdp_x, ytmdp_x, ztmdp_x), (xtmdm_x, ytmdm_x, ztmdm_x))[0]*z_col
yctp = ytpneut + point_vectors(Nc, Ns, (xtpdp_y, ytpdp_y, ztpdp_y), (xtpdm_y, ytpdm_y, ztpdm_y), (xtpdp_x, ytpdp_x, ztpdp_x), (xtpdm_x, ytpdm_x, ztpdm_x))[1]*z_col
yctm = ytmneut + point_vectors(Nc, Ns, (xtmdp_y, ytmdp_y, ztmdp_y), (xtmdm_y, ytmdm_y, ztmdm_y), (xtmdp_x, ytmdp_x, ztmdp_x), (xtmdm_x, ytmdm_x, ztmdm_x))[1]*z_col
zctp = ztpneut + point_vectors(Nc, Ns, (xtpdp_y, ytpdp_y, ztpdp_y), (xtpdm_y, ytpdm_y, ztpdm_y), (xtpdp_x, ytpdp_x, ztpdp_x), (xtpdm_x, ytpdm_x, ztpdm_x))[2]*z_col
zctm = ztmneut + point_vectors(Nc, Ns, (xtmdp_y, ytmdp_y, ztmdp_y), (xtmdm_y, ytmdm_y, ztmdm_y), (xtmdp_x, ytmdp_x, ztmdp_x), (xtmdm_x, ytmdm_x, ztmdm_x))[2]*z_col
# Velocity calculations on the surface panel midpoints
self.vx = (xctp - xctm)/(2*TSTEP)
self.vy = (yctp - yctm)/(2*TSTEP)
self.vz = (zctp - zctm)/(2*TSTEP)
elif i == 1:
# First-order backwards differencing of body collocation point positions
self.vx = (self.AF.x_mid[:,:,0]-self.AF.x_mid[:,:,1])/DEL_T - self.V0
self.vy = (self.AF.y_mid[:,:,0]-self.AF.y_mid[:,:,1])/DEL_T
self.vz = (self.AF.z_mid[:,:,0]-self.AF.z_mid[:,:,1])/DEL_T
else:
# Second-order backwards differencing of body collocation point positions
self.vx = (3*self.AF.x_mid[:,:,0]-4*self.AF.x_mid[:,:,1]+self.AF.x_mid[:,:,2])/(2*DEL_T) - self.V0
self.vy = (3*self.AF.y_mid[:,:,0]-4*self.AF.y_mid[:,:,1]+self.AF.y_mid[:,:,2])/(2*DEL_T)
self.vz = (3*self.AF.z_mid[:,:,0]-4*self.AF.z_mid[:,:,1]+self.AF.z_mid[:,:,2])/(2*DEL_T)
# # Body source strengths with normal vector pointing outward (overall sigma pointing outward)
(nx, ny, nz) = panel_vectors(self.AF.x, self.AF.y, self.AF.z)[0:3]
self.sigma = nx*(self.V0 + self.vx) + ny*self.vy + nz*self.vz
def pressure(self, RHO, DEL_T, i):
"""Calculates the pressure distribution along the body's surface.
Args:
RHO: Fluid density.
DEL_T: Time step length.
i: Time step number.
"""
(tx,tz,nx,nz,lpanel) = panel_vectors(self.AF.x,self.AF.z)
# Tangential panel velocity dmu/dl, first-order differencing
dmu_dl = np.empty(self.N)
dmu_dl[0] = (self.mu[0]-self.mu[1]) / (lpanel[0]/2 + lpanel[1]/2)
dmu_dl[1:-1] = (self.mu[:-2]-self.mu[2:]) / (lpanel[:-2]/2 + lpanel[1:-1] + lpanel[2:]/2)
dmu_dl[-1] = (self.mu[-2]-self.mu[-1]) / (lpanel[-2]/2 + lpanel[-1]/2)
# Potential change dmu/dt, second-order differencing after first time step
if i == 0:
dmu_dt = self.mu / DEL_T
if i == 1:
dmu_dt = (self.mu - self.mu_past[0,:])/DEL_T
else:
dmu_dt = (3*self.mu - 4*self.mu_past[0,:] + self.mu_past[1,:])/(2*DEL_T)
# Unsteady pressure calculation (from Matlab code)
qpx_tot = dmu_dl*tx + self.sigma*nx
qpz_tot = dmu_dl*tz + self.sigma*nz
self.p = -RHO*(qpx_tot**2 + qpz_tot**2)/2. + RHO*dmu_dt + RHO*(qpx_tot*(self.V0+self.vx) + qpz_tot*self.vz)
self.cp = self.p / (0.5*RHO*self.V0**2)
def force(self, THETA, RHO, V0, C, B, i):
"""Calculates drag, lift, and thrust forces acting on the body.
Calculates input power.
Args:
i: Time step number.
"""
(tx,tz,nx,nz,lpanel) = panel_vectors(self.AF.x, self.AF.z)
delFx = -self.p * lpanel * B * nx
delFz = -self.p * lpanel * B * nz
delF = np.array([delFx, delFz])
delP = np.sum(-delF * np.array([self.vx.T, self.vz.T]), 1)
force = np.sum(delF,1)
lift = force[1] * np.cos(THETA) - force[0] * np.sin(THETA)
thrust = -(force[1] * np.sin(THETA) + force[0] * np.cos(THETA))
power = np.sum(delP, 0)
self.Cf = np.sqrt(force[0]**2 + force[1]**2) / (0.5 * RHO * V0**2 * C *B)
self.Cl = lift /(0.5 * RHO * V0**2 * C *B)
self.Ct = thrust / (0.5 * RHO * V0**2 * C *B)
self.Cpow = power / (0.5 * RHO * V0**3 * C *B)