forked from intelligent-environments-lab/CityLearn
-
Notifications
You must be signed in to change notification settings - Fork 7
/
pezTest.py
79 lines (66 loc) · 2 KB
/
pezTest.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
import multiprocessing
import sys
from pettingzoo.test import parallel_api_test
from citylearn import GridLearn
from citylearn import MyEnv
from pathlib import Path
from stable_baselines3.ppo import MlpPolicy
from stable_baselines3 import PPO
import gym
import numpy as np
import supersuit as ss
from copy import deepcopy
import time
import os
import random
import time
random.seed(12)
np.random.seed(12)
model_name = "test"
tic = time.time()
climate_zone = 1
data_path = Path("../citylearn/data/Climate_Zone_"+str(climate_zone))
buildings_states_actions = '../citylearn/buildings_state_action_space.json'
config = {
"model_name":model_name,
"data_path":data_path,
"climate_zone":climate_zone,
"buildings_states_actions_file":buildings_states_actions,
"hourly_timesteps":4,
"percent_rl":0.5,
"nclusters":1,
"max_num_houses":None
}
grid = GridLearn(**config)
env = MyEnv(grid) #for _ in range(config['nclusters'])
env.grid = grid
env.initialize_rbc_agents()
print('creating pettingzoo env...')
env = ss.pettingzoo_env_to_vec_env_v0(env)
print('stacking vec env...')
# nenvs = 2
env = ss.concat_vec_envs_v0(env, 1, num_cpus=1, base_class='stable_baselines3')
grid.normalize_reward()
# print('setting the grid...')
# for env in envs:
# for n in range(nenvs):
# # env.venv.vec_envs[n].par_env.aec_env.env.env.env.grid = grids[n]
# env.venv.vec_envs[n].par_env.grid = grids[n]
# # env.venv.vec_envs[n].par_env.aec_env.env.env.env.initialize_rbc_agents()
# env.venv.vec_envs[n].par_env.initialize_rbc_agents()
model = PPO(MlpPolicy, env, ent_coef=0.1, learning_rate=0.001, n_epochs=30)
# nloops=1
# for loop in range(nloops):
env.reset()
print('==============')
model.learn(4*4*8759, verbose=2)
print('==============')
if not os.path.exists(f'models/{model_name}'):
os.makedirs(f'models/{model_name}')
os.chdir(f'models/{model_name}')
# for m in range(len(models)):
# print('saving trained model')
model.save(f"model")
os.chdir('../..')
toc = time.time()
print(toc-tic)