forked from HarshCasper/NeoAlgo
-
Notifications
You must be signed in to change notification settings - Fork 1
/
MinimumSumPartition.java
53 lines (45 loc) · 1.62 KB
/
MinimumSumPartition.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
import java.util.*;
public class MinimumSumPartition {
// Function to find the minimum sum
public static int findMinSum(int[] arr, int i, int sumCalculated, int total)
{
// check for last element, meaning we have sum of one subset as sumCalculated and the other as
// total - 2*sumCalculated, so we return their absolute difference
if (i == 0) {
return Math.abs((total-sumCalculated) - sumCalculated);
}
// returning minimum of when we first take arr[i] in first set and when we take it in 2nd set
// recursive approach
return Math.min(findMinSum(arr, i - 1, sumCalculated + arr[i-1], total),
findMinSum(arr, i-1, sumCalculated, total));
}
public static void main(String[] args) {
Scanner scanner = new Scanner(System.in);
System.out.println("Enter size for the array:");
int size = scanner.nextInt();
int[] arr = new int[size];
System.out.println("Enter array elements:");
for (int i = 0; i < size; i++) {
arr[i] = scanner.nextInt();
}
scanner.close();
// find total sum of all array elements
int arraySum = 0;
for (int i = 0; i < size; i++) {
arraySum += arr[i];
}
int result = findMinSum(arr, size, 0, arraySum);
System.out.println("The minimum difference between sum of 2 sets is:" + result);
}
}
/*
* Sample input/output
* Enter size for the array:
* 6
* Enter array elements:
* 3 1 4 2 2 1
* The minimum difference between sum of 2 sets is:1
*
* Time complexity: O(2^n)
* Space complexity: O(n)
*/