forked from HarshCasper/NeoAlgo
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Euler's_Totient_function.c
88 lines (77 loc) · 1.46 KB
/
Euler's_Totient_function.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
/*
Euler's totient function, also known as phi-function ϕ(n), counts the
numberof integers between 1 and n inclusive, which are coprime to n.
*/
#include <stdio.h>
void Euler_Totient(int, int[]);
int main()
{
int n, phi[100];
printf("Enter an integer: ");
scanf("%d", &n);
Euler_Totient(n, phi);
printf("\nThe euler totient function for all integers from 1 to %d is:\n", n);
for (int i = 1; i <= n; ++i)
{
printf("%d: %d\n", i, phi[i]);
}
return 0;
}
// Function whuch counts number of integers between 1 to n which are co-prime to n
void Euler_Totient(int n, int phi[])
{
int temp = n;
//This gives euler totient function for N
// Time Complexity: O(N*root(N))
int ans = n;
for (int i = 2; i <= n; ++i)
{
if (n % i == 0)
{
ans = ans - ans / i;
while (n % i == 0)
n /= i;
}
}
if (n > 1)
{
ans = ans - ans / n;
}
n = temp;
printf("\nThe euler totient function for %d is: %d", n, ans);
//This gives euler totient function from 1 to N
// Time Complexity: O(N loglogN) - same as Sieve of Eratosthenes
for (int i = 0; i <= n; ++i)
{
phi[i] = i;
}
for (int i = 2; i <= n; ++i)
{
if (phi[i] == i)
{
for (int j = i; j <= n; j += i)
{
phi[j] = phi[j] - phi[j] / i;
}
}
}
}
/*
Time Complexity: O(N loglogN)
OUTPUT
Enter an integer: 10
The euler totient function for 10 is: 4
The euler totient function for all integers from 1 to 10 is:
1: 1
2: 1
3: 2
4: 2
5: 4
6: 2
7: 6
8: 4
9: 6
10: 4
-----
(1,3,7,9) are coprime to 10
*/