forked from diyiiyiii/StyTR-2
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest.py
183 lines (143 loc) · 5.68 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
import argparse
from pathlib import Path
import os
import torch
import torch.nn as nn
from PIL import Image
from os.path import basename
from os.path import splitext
from torchvision import transforms
from torchvision.utils import save_image
from function import calc_mean_std, normal, coral
import models.transformer as transformer
import models.StyTR as StyTR
import matplotlib.pyplot as plt
from matplotlib import cm
from function import normal
import numpy as np
import time
def test_transform(size, crop):
transform_list = []
if size != 0:
transform_list.append(transforms.Resize(size))
if crop:
transform_list.append(transforms.CenterCrop(size))
transform_list.append(transforms.ToTensor())
transform = transforms.Compose(transform_list)
return transform
def style_transform(h,w):
k = (h,w)
size = int(np.max(k))
print(type(size))
transform_list = []
transform_list.append(transforms.CenterCrop((h,w)))
transform_list.append(transforms.ToTensor())
transform = transforms.Compose(transform_list)
return transform
def content_transform():
transform_list = []
transform_list.append(transforms.ToTensor())
transform = transforms.Compose(transform_list)
return transform
parser = argparse.ArgumentParser()
# Basic options
parser.add_argument('--content', type=str,
help='File path to the content image')
parser.add_argument('--content_dir', type=str,
help='Directory path to a batch of content images')
parser.add_argument('--style', type=str,
help='File path to the style image, or multiple style \
images separated by commas if you want to do style \
interpolation or spatial control')
parser.add_argument('--style_dir', type=str,
help='Directory path to a batch of style images')
parser.add_argument('--output', type=str, default='output',
help='Directory to save the output image(s)')
parser.add_argument('--vgg', type=str, default='./experiments/vgg_normalised.pth')
parser.add_argument('--decoder_path', type=str, default='experiments/decoder_iter_160000.pth')
parser.add_argument('--Trans_path', type=str, default='experiments/transformer_iter_160000.pth')
parser.add_argument('--embedding_path', type=str, default='experiments/embedding_iter_160000.pth')
parser.add_argument('--style_interpolation_weights', type=str, default="")
parser.add_argument('--a', type=float, default=1.0)
parser.add_argument('--position_embedding', default='sine', type=str, choices=('sine', 'learned'),
help="Type of positional embedding to use on top of the image features")
parser.add_argument('--hidden_dim', default=512, type=int,
help="Size of the embeddings (dimension of the transformer)")
args = parser.parse_args()
# Advanced options
content_size=512
style_size=512
crop='store_true'
save_ext='.jpg'
output_path=args.output
preserve_color='store_true'
alpha=args.a
device = torch.device("cuda:2" if torch.cuda.is_available() else "cpu")
# Either --content or --content_dir should be given.
if args.content:
content_paths = [Path(args.content)]
else:
content_dir = Path(args.content_dir)
content_paths = [f for f in content_dir.glob('*')]
# Either --style or --style_dir should be given.
if args.style:
style_paths = [Path(args.style)]
else:
style_dir = Path(args.style_dir)
style_paths = [f for f in style_dir.glob('*')]
if not os.path.exists(output_path):
os.mkdir(output_path)
vgg = StyTR.vgg
vgg.load_state_dict(torch.load(args.vgg))
vgg = nn.Sequential(*list(vgg.children())[:44])
decoder = StyTR.decoder
Trans = transformer.Transformer()
embedding = StyTR.PatchEmbed()
decoder.eval()
Trans.eval()
vgg.eval()
from collections import OrderedDict
new_state_dict = OrderedDict()
state_dict = torch.load(args.decoder_path)
for k, v in state_dict.items():
#namekey = k[7:] # remove `module.`
namekey = k
new_state_dict[namekey] = v
decoder.load_state_dict(new_state_dict)
new_state_dict = OrderedDict()
state_dict = torch.load(args.Trans_path)
for k, v in state_dict.items():
#namekey = k[7:] # remove `module.`
namekey = k
new_state_dict[namekey] = v
Trans.load_state_dict(new_state_dict)
new_state_dict = OrderedDict()
state_dict = torch.load(args.embedding_path)
for k, v in state_dict.items():
#namekey = k[7:] # remove `module.`
namekey = k
new_state_dict[namekey] = v
embedding.load_state_dict(new_state_dict)
network = StyTR.StyTrans(vgg,decoder,embedding,Trans,args)
network.eval()
network.to(device)
content_tf = test_transform(content_size, crop)
style_tf = test_transform(style_size, crop)
for content_path in content_paths:
for style_path in style_paths:
print(content_path)
content_tf1 = content_transform()
content = content_tf(Image.open(content_path).convert("RGB"))
h,w,c=np.shape(content)
style_tf1 = style_transform(h,w)
style = style_tf(Image.open(style_path).convert("RGB"))
style = style.to(device).unsqueeze(0)
content = content.to(device).unsqueeze(0)
with torch.no_grad():
output= network(content,style)
output = output.cpu()
output_name = '{:s}/{:s}_stylized_{:s}{:s}'.format(
output_path, splitext(basename(content_path))[0],
splitext(basename(style_path))[0], save_ext
)
save_image(output, output_name)