-
Notifications
You must be signed in to change notification settings - Fork 625
/
Copy pathuse_preproc_bg.py
44 lines (34 loc) · 1.21 KB
/
use_preproc_bg.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
"""
Sample code for load the 8000 pre-processed background image data.
Before running, first download the files from:
https://github.com/ankush-me/SynthText#pre-generated-dataset
"""
import h5py
import numpy as np
from PIL import Image
import os.path as osp
import cPickle as cp
im_dir = 'bg_img'
depth_db = h5py.File('depth.h5','r')
seg_db = h5py.File('seg.h5','r')
imnames = sorted(depth_db.keys())
with open('imnames.cp', 'rb') as f:
filtered_imnames = set(cp.load(f))
for imname in imnames:
# ignore if not in filetered list:
if imname not in filtered_imnames: continue
# get the colour image:
img = Image.open(osp.join(im_dir, imname)).convert('RGB')
# get depth:
depth = depth_db[imname][:].T
depth = depth[:,:,0]
# get segmentation info:
seg = seg_db['mask'][imname][:].astype('float32')
area = seg_db['mask'][imname].attrs['area']
label = seg_db['mask'][imname].attrs['label']
# re-size uniformly:
sz = depth.shape[:2][::-1]
img = np.array(img.resize(sz,Image.ANTIALIAS))
seg = np.array(Image.fromarray(seg).resize(sz,Image.NEAREST))
# see `gen.py` for how to use img, depth, seg, area, label for further processing.
# https://github.com/ankush-me/SynthText/blob/master/gen.py