-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathcrpa_fetch.py
170 lines (147 loc) · 6.98 KB
/
crpa_fetch.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
import firebase_admin
from firebase_admin import credentials, db
import networkx as nx
import requests
import random
import logging
from concurrent.futures import ThreadPoolExecutor, as_completed
#import matplotlib.pyplot as plt
# Configure logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
class BloodSupplyChainOptimizer:
def __init__(self, ors_api_key):
self.graph = nx.Graph()
self.ors_api_key = ors_api_key
# Initialize Firebase
cred = credentials.Certificate('/home/anirudh/Blood_reaper/blood-reaper-f7580-firebase-adminsdk-dwyff-21dae7f7ea.json')
firebase_admin.initialize_app(cred, {
'databaseURL': "https://blood-reaper-f7580-default-rtdb.firebaseio.com"
})
def fetch_and_add_locations(self, location_type='hospital'):
"""
Fetch locations of a specific type (e.g., hospitals or blood banks) from Firebase and add them to the graph.
"""
ref_path = f'/{location_type}'
ref = db.reference(ref_path)
locations = ref.get()
if locations:
logging.info(f"Fetched {len(locations)} {location_type} from Firebase.")
with ThreadPoolExecutor(max_workers=10) as executor:
futures = [executor.submit(self.process_location, loc_id, loc_data, location_type) for loc_id, loc_data in locations.items()]
for future in as_completed(futures):
try:
future.result()
except Exception as e:
logging.error(f"Error processing location: {e}")
def process_location(self, loc_id, loc_data, location_type):
"""
Process individual location data and add it to the graph.
"""
try:
name = loc_data.get('name', 'Unknown')
latitude = loc_data.get('location', {}).get('lat')
longitude = loc_data.get('location', {}).get('lng')
blood_inventory = loc_data.get('blood_inventory', None)
if not name or latitude is None or longitude is None:
raise ValueError("Invalid location data")
self.add_location(name, latitude, longitude, is_hospital=(location_type == 'hospitals'), blood_inventory=blood_inventory)
except ValueError as ve:
logging.warning(f"Skipping location due to validation error: {ve}")
except Exception as e:
logging.error(f"Error in processing location: {e}")
def add_location(self, name, latitude, longitude, is_hospital=False, blood_inventory=None):
"""
Add a location to the graph.
"""
if blood_inventory is None:
blood_types = ['A+', 'A-', 'B+', 'B-', 'O+', 'O-', 'AB+', 'AB-']
blood_inventory = {bt: random.randint(0, 20) for bt in blood_types}
self.graph.add_node(name, latitude=latitude, longitude=longitude, is_hospital=is_hospital, blood_inventory=blood_inventory)
logging.info(f"Added location: {name}")
def add_edges_between_nodes(self):
"""
Add edges between nodes using real distances obtained from the OpenRouteService API.
"""
nodes = list(self.graph.nodes)
with ThreadPoolExecutor(max_workers=10) as executor:
futures = [executor.submit(self.process_edge, u, v) for u in nodes for v in nodes if u != v]
for future in as_completed(futures):
try:
future.result()
except Exception as e:
logging.error(f"Error processing edge: {e}")
def process_edge(self, u, v):
"""
Calculate the distance between two nodes and add an edge to the graph.
"""
try:
distance = self.calculate_real_distance(
self.graph.nodes[u]['latitude'],
self.graph.nodes[u]['longitude'],
self.graph.nodes[v]['latitude'],
self.graph.nodes[v]['longitude']
)
if distance is not None:
self.graph.add_edge(u, v, base_travel_time=distance / 1000) # Example conversion to travel time
logging.info(f"Added edge between {u} and {v} with distance {distance} meters")
except Exception as e:
logging.error(f"Error adding edge between {u} and {v}: {e}")
def calculate_real_distance(self, lat1, lon1, lat2, lon2):
"""
Calculate the real distance between two points using the OpenRouteService API.
"""
try:
url = f"https://api.openrouteservice.org/v2/directions/driving-car?api_key={self.ors_api_key}"
payload = {
"coordinates": [[lon1, lat1], [lon2, lat2]],
"units": "m"
}
headers = {
"Content-Type": "application/json"
}
response = requests.post(url, json=payload, headers=headers)
response.raise_for_status()
data = response.json()
distance = data['routes'][0]['summary']['distance']
return distance
except (IndexError, KeyError, requests.RequestException) as e:
logging.error(f"Error fetching distance between coordinates ({lat1}, {lon1}) and ({lat2}, {lon2}): {e}")
return None
'''
def visualize_graph(self):
"""
Visualize the graph using matplotlib.
"""
pos = nx.spring_layout(self.graph, seed=42) # Position nodes using a layout algorithm
# Draw nodes
node_colors = ['lightgreen' if data['is_hospital'] else 'lightblue' for _, data in self.graph.nodes(data=True)]
nx.draw_networkx_nodes(self.graph, pos, node_color=node_colors, node_size=500, alpha=0.7)
# Draw edges
nx.draw_networkx_edges(self.graph, pos, alpha=0.5)
# Draw labels
labels = {node: f"{node}\n{data['blood_inventory']}" for node, data in self.graph.nodes(data=True)}
nx.draw_networkx_labels(self.graph, pos, labels=labels, font_size=8, verticalalignment='bottom')
plt.title("Blood Supply Chain Network")
plt.show()'''
def print_graph(self):
"""
Print the nodes and edges of the graph with their attributes.
"""
logging.info("Nodes:")
for node, data in self.graph.nodes(data=True):
logging.info(f"Node: {node}, Data: {data}")
logging.info("\nEdges:")
for u, v, data in self.graph.edges(data=True):
logging.info(f"Edge: ({u}, {v}), Data: {data}")
# Example usage
ors_api_key = "5b3ce3597851110001cf62484c8507e38f224cfb97cfd5794311eadd" # Replace with your OpenRouteService API key
optimizer = BloodSupplyChainOptimizer(ors_api_key)
# Fetch and add hospitals and blood banks
optimizer.fetch_and_add_locations(location_type='hospital')
optimizer.fetch_and_add_locations(location_type='blood_bank')
# Add edges between nodes using real distances
optimizer.add_edges_between_nodes()
# Print the graph details
optimizer.print_graph()
# Visualize the graph
#optimizer.visualize_graph()