-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathgis-r.R
110 lines (90 loc) · 3.59 KB
/
gis-r.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
## ----setup, include=FALSE------------------------------------------------
options(htmltools.dir.version = FALSE)
## ----eval=FALSE, tidy=FALSE----------------------------------------------
## library(tidyverse)
## library(sf)
## library(tmap)
##
## sales <- read_csv("output/sales-tidy.csv")
## tracts <- st_read("data/orig/shapefiles/detroit_tracts.shp")
## tracts <- rename(tracts, tract = GEOID)
##
## sales <- sales %>%
## right_join(tracts, ., by = "tract")
##
## med_sales_map <- tm_shape(sales, unit = "mi") +
## tm_fill("med_price", palette = "Blues", breaks = quantile(a$med_price), title = "Median Sales Price") +
## tm_facets("after_hhf") +
## tm_shape(tracts) +
## tm_borders() +
## tm_compass(fontsize = 0.6, color.dark = "dark grey") +
## tm_scale_bar(color.dark = "dark grey")
##
## save_tmap(med_sales_map, "doc/figs/med_sales_map.png")
## ----eval=FALSE, tidy=FALSE----------------------------------------------
## install.packages("sf")
## install.packages("tmap")
## ----warning=FALSE-------------------------------------------------------
# Load package
library(sf)
# Read in shapefile
chi <- st_read("data/Neighborhoods_2012b.shp")
## ------------------------------------------------------------------------
head(chi)
## ------------------------------------------------------------------------
class(chi)
## ------------------------------------------------------------------------
# Map it using base R: just shape outlines
plot(st_geometry(chi))
## ------------------------------------------------------------------------
# This maps all the attributes
plot(chi)
## ------------------------------------------------------------------------
chi2 <- st_read("data/ComArea_ACS14_f.shp")
## ------------------------------------------------------------------------
# Check what variables we have
names(chi2)
# Calculate population density
library(dplyr)
chi2 <- mutate(chi2, Pop2014 = Pop2014/shape_area)
## ------------------------------------------------------------------------
# Map population density by neighborhood
plot(chi2["Pop2014"])
## ----echo=FALSE----------------------------------------------------------
library(tmap)
tm_shape(chi2) +
tm_fill("Pop2014", palette = "Purples",
title = "Population by Neighborhood, 2014")
## ----warning=FALSE-------------------------------------------------------
groceries <- st_read("data/groceries.shp")
## ----warning=FALSE-------------------------------------------------------
# Get the CRS (coordinate reference system) of the groceries point data
groceries_crs <- st_crs(groceries)
# Project the neighborhood boundaries
chi2 <- st_transform(chi2, groceries_crs)
## ----echo=FALSE----------------------------------------------------------
# Plot both
tm_shape(chi2) +
tm_borders() +
tm_fill("Pop2014", palette = "Purples",
title = "Population by Neighborhood, 2014") +
tm_shape(groceries) +
tm_dots(title = "Groceries", size = 0.1, col = "black")
## ----message=FALSE-------------------------------------------------------
chi2 %>%
st_join(groceries, .) %>%
group_by(community) %>%
tally() %>%
arrange(desc(n))
## ----eval=FALSE----------------------------------------------------------
## get_point_counts_in_buffer <- function(points_to_buffer,
## points_to_intersect,
## buffer_size = 500) {
## number_points_within_buffer <- points_to_buffer %>%
## st_buffer(buffer_size) %>%
## st_contains(points_to_intersect) %>%
## map_dbl(length) %>%
## tibble(pts_in_buffer = .)
##
## return(number_points_within_buffer)
## }