-
Notifications
You must be signed in to change notification settings - Fork 33
/
Copy pathEUR_Cap_grad.py
216 lines (169 loc) · 8.43 KB
/
EUR_Cap_grad.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
from __future__ import division, print_function, unicode_literals
import argparse
import numpy as np
import torch
import torch.nn as nn
import os
import json
import random
import time
from torch.autograd import Variable
from torch.optim import Adam
from network import CapsNet_Text,BCE_loss, CNN_KIM
from w2v import load_word2vec
import data_helpers
torch.manual_seed(0)
torch.cuda.manual_seed(0)
np.random.seed(0)
random.seed(0)
parser = argparse.ArgumentParser()
parser.add_argument('--dataset', type=str, default='eurlex_raw_text.p',
help='Options: eurlex_raw_text.p, rcv1_raw_text.p, wiki30k_raw_text.p')
parser.add_argument('--vocab_size', type=int, default=30001, help='vocabulary size')
parser.add_argument('--vec_size', type=int, default=300, help='embedding size')
parser.add_argument('--sequence_length', type=int, default=500, help='the length of documents')
parser.add_argument('--is_AKDE', type=bool, default=True, help='if Adaptive KDE routing is enabled')
parser.add_argument('--num_epochs', type=int, default=30, help='Number of training epochs')
parser.add_argument('--tr_batch_size', type=int, default=256, help='Batch size for training')
parser.add_argument('--ts_batch_size', type=int, default=16, help='Batch size for training')
parser.add_argument('--learning_rate', type=float, default=1e-3, help='Learning rate for training')
parser.add_argument('--start_from', type=str, default='', help='')
parser.add_argument('--num_compressed_capsule', type=int, default=128, help='The number of compact capsules')
parser.add_argument('--dim_capsule', type=int, default=16, help='The number of dimensions for capsules')
parser.add_argument('--learning_rate_decay_start', type=int, default=0,
help='at what iteration to start decaying learning rate? (-1 = dont) (in epoch)')
parser.add_argument('--learning_rate_decay_every', type=int, default=20,
help='how many iterations thereafter to drop LR?(in epoch)')
parser.add_argument('--learning_rate_decay_rate', type=float, default=0.95,
help='how many iterations thereafter to drop LR?(in epoch)')
parser.add_argument('--gradient_accumulation_steps', type=int, default=8)
parser.add_argument('--re_ranking', type=int, default=200, help='The number of re-ranking size')
args = parser.parse_args()
params = vars(args)
print(json.dumps(params, indent = 2))
X_trn, Y_trn, Y_trn_o, X_tst, Y_tst, Y_tst_o, vocabulary, vocabulary_inv = data_helpers.load_data(args.dataset,
max_length=args.sequence_length,
vocab_size=args.vocab_size)
Y_trn = Y_trn.toarray()
Y_tst = Y_tst.toarray()
X_trn = X_trn.astype(np.int32)
X_tst = X_tst.astype(np.int32)
Y_trn = Y_trn.astype(np.int32)
Y_tst = Y_tst.astype(np.int32)
embedding_weights = load_word2vec('glove', vocabulary_inv, args.vec_size)
args.num_classes = Y_trn.shape[1]
capsule_net = CapsNet_Text(args, embedding_weights)
capsule_net = nn.DataParallel(capsule_net).cuda()
model_name = 'model-EUR-CNN-40.pth'
baseline = CNN_KIM(args, embedding_weights)
baseline.load_state_dict(torch.load(os.path.join('save_new', model_name)))
baseline = nn.DataParallel(baseline).cuda()
print(model_name + ' loaded')
def transformLabels(labels, total_labels):
label_index = list(set([l for _ in total_labels for l in _]))
label_index.sort()
variable_num_classes = len(label_index)
target = []
for _ in labels:
tmp = np.zeros([variable_num_classes], dtype=np.float32)
tmp[[label_index.index(l) for l in _]] = 1
target.append(tmp)
target = np.array(target)
return label_index, target
current_lr = args.learning_rate
optimizer = Adam(capsule_net.parameters(), lr=current_lr)
def set_lr(optimizer, lr):
for group in optimizer.param_groups:
group['lr'] = lr
from network import CNN_KIM,CapsNet_Text
import random
from utils import evaluate
import data_helpers
import scipy.sparse as sp
from w2v import load_word2vec
import os
for epoch in range(args.num_epochs):
nr_trn_num = X_trn.shape[0]
nr_batches = int(np.ceil(nr_trn_num / float(args.tr_batch_size)))
if epoch > args.learning_rate_decay_start and args.learning_rate_decay_start >= 0:
frac = (epoch - args.learning_rate_decay_start) // args.learning_rate_decay_every
decay_factor = args.learning_rate_decay_rate ** frac
current_lr = current_lr * decay_factor
print(current_lr)
set_lr(optimizer, current_lr)
capsule_net.train()
for iteration, batch_idx in enumerate(np.random.permutation(range(nr_batches))):
start = time.time()
start_idx = batch_idx * args.tr_batch_size
end_idx = min((batch_idx + 1) * args.tr_batch_size, nr_trn_num)
X = X_trn[start_idx:end_idx]
Y = Y_trn_o[start_idx:end_idx]
batch_steps = int(np.ceil(len(X)) / (float(args.tr_batch_size) / float(args.gradient_accumulation_steps)))
batch_loss = 0
for i in range(batch_steps):
step_size = int(float(args.tr_batch_size) // float(args.gradient_accumulation_steps))
step_X = X[i * step_size: (i+1) * step_size]
step_Y = Y[i * step_size: (i+1) * step_size]
step_X = Variable(torch.from_numpy(step_X).long()).cuda()
step_labels, step_target = transformLabels(step_Y, Y)
step_target = Variable(torch.from_numpy(step_target).float()).cuda()
poses, activations = capsule_net(step_X, step_labels)
step_loss = BCE_loss(activations, step_target)
step_loss = step_loss / args.gradient_accumulation_steps
step_loss.backward()
batch_loss += step_loss.item()
optimizer.step()
optimizer.zero_grad()
done = time.time()
elapsed = done - start
print("\rIteration: {}/{} ({:.1f}%) Loss: {:.5f} {:.5f}".format(
iteration, nr_batches,
iteration * 100 / nr_batches,
batch_loss, elapsed),
end="")
if (epoch + 1) > 20 and (epoch + 1)<30:
nr_tst_num = X_tst.shape[0]
nr_batches = int(np.ceil(nr_tst_num / float(args.ts_batch_size)))
n, k_trn = Y_trn.shape
m, k_tst = Y_tst.shape
print ('k_trn:', k_trn)
print ('k_tst:', k_tst)
capsule_net.eval()
top_k = 50
row_idx_list, col_idx_list, val_idx_list = [], [], []
for batch_idx in range(nr_batches):
start = time.time()
start_idx = batch_idx * args.ts_batch_size
end_idx = min((batch_idx + 1) * args.ts_batch_size, nr_tst_num)
X = X_tst[start_idx:end_idx]
Y = Y_tst_o[start_idx:end_idx]
data = Variable(torch.from_numpy(X).long()).cuda()
candidates = baseline(data)
candidates = candidates.data.cpu().numpy()
Y_pred = np.zeros([candidates.shape[0], args.num_classes])
for i in range(candidates.shape[0]):
candidate_labels = candidates[i, :].argsort()[-args.re_ranking:][::-1].tolist()
_, activations_2nd = capsule_net(data[i, :].unsqueeze(0), candidate_labels)
Y_pred[i, candidate_labels] = activations_2nd.squeeze(2).data.cpu().numpy()
for i in range(Y_pred.shape[0]):
sorted_idx = np.argpartition(-Y_pred[i, :], top_k)[:top_k]
row_idx_list += [i + start_idx] * top_k
col_idx_list += (sorted_idx).tolist()
val_idx_list += Y_pred[i, sorted_idx].tolist()
done = time.time()
elapsed = done - start
print("\r Epoch: {} Reranking: {} Iteration: {}/{} ({:.1f}%) Loss: {:.5f} {:.5f}".format(
(epoch + 1), args.re_ranking, batch_idx, nr_batches,
batch_idx * 100 / nr_batches,
0, elapsed),
end="")
m = max(row_idx_list) + 1
n = max(k_trn, k_tst)
print(elapsed)
Y_tst_pred = sp.csr_matrix((val_idx_list, (row_idx_list, col_idx_list)), shape=(m, n))
if k_trn >= k_tst:
Y_tst_pred = Y_tst_pred[:, :k_tst]
evaluate(Y_tst_pred.toarray(), Y_tst)
# checkpoint_path = os.path.join('save_new', 'model-eur-akde-' + str(epoch + 1) + '.pth')
# torch.save(capsule_net.state_dict(), checkpoint_path)
# print("model saved to {}".format(checkpoint_path))