forked from micropython/micropython
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsamd_qspiflash.c
491 lines (415 loc) · 16.9 KB
/
samd_qspiflash.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
/*
* This file is part of the MicroPython project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2019 Adafruit Industries
* Copyright (c) 2023 Robert Hammelrath
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*
* Port of the Adafruit QSPIflash driver for SAMD devices
*
*/
#include <stdint.h>
#include <string.h>
#include "py/obj.h"
#include "py/runtime.h"
#include "py/mphal.h"
#include "py/mperrno.h"
#include "modmachine.h"
#include "extmod/machine_spi.h"
#include "extmod/vfs.h"
#include "pin_af.h"
#include "clock_config.h"
#include "sam.h"
#ifdef MICROPY_HW_QSPIFLASH
#include "drivers/memory/external_flash_device.h"
// QSPI command codes
enum
{
QSPI_CMD_READ = 0x03,
QSPI_CMD_READ_4B = 0x13,
QSPI_CMD_QUAD_READ = 0x6B,// 1 line address, 4 line data
QSPI_CMD_READ_JEDEC_ID = 0x9f,
QSPI_CMD_PAGE_PROGRAM = 0x02,
QSPI_CMD_PAGE_PROGRAM_4B = 0x12,
QSPI_CMD_QUAD_PAGE_PROGRAM = 0x32, // 1 line address, 4 line data
QSPI_CMD_READ_STATUS = 0x05,
QSPI_CMD_READ_STATUS2 = 0x35,
QSPI_CMD_WRITE_STATUS = 0x01,
QSPI_CMD_WRITE_STATUS2 = 0x31,
QSPI_CMD_ENABLE_RESET = 0x66,
QSPI_CMD_RESET = 0x99,
QSPI_CMD_WRITE_ENABLE = 0x06,
QSPI_CMD_WRITE_DISABLE = 0x04,
QSPI_CMD_ERASE_SECTOR = 0x20,
QSPI_CMD_ERASE_SECTOR_4B = 0x21,
QSPI_CMD_ERASE_BLOCK = 0xD8,
QSPI_CMD_ERASE_CHIP = 0xC7,
QSPI_CMD_READ_SFDP_PARAMETER = 0x5A,
};
// QSPI flash pins are: CS=PB11, SCK=PB10, IO0-IO3=PA08, PA09, PA10 and PA11.
#define PIN_CS (43)
#define PIN_SCK (42)
#define PIN_IO0 (8)
#define PIN_IO1 (9)
#define PIN_IO2 (10)
#define PIN_IO3 (11)
#define PAGE_SIZE (256)
#define SECTOR_SIZE (4096)
typedef struct _samd_qspiflash_obj_t {
mp_obj_base_t base;
uint16_t pagesize;
uint16_t sectorsize;
uint32_t size;
uint8_t phase;
uint8_t polarity;
} samd_qspiflash_obj_t;
/// List of all possible flash devices used by Adafruit boards
static const external_flash_device possible_devices[] = {
MICROPY_HW_QSPIFLASH
};
#define EXTERNAL_FLASH_DEVICE_COUNT MP_ARRAY_SIZE(possible_devices)
static external_flash_device const *flash_device;
static external_flash_device generic_config = GENERIC;
extern const mp_obj_type_t samd_qspiflash_type;
// The QSPIflash object is a singleton
static samd_qspiflash_obj_t qspiflash_obj = { { &samd_qspiflash_type } };
// Turn off cache and invalidate all data in it.
static void samd_peripherals_disable_and_clear_cache(void) {
CMCC->CTRL.bit.CEN = 0;
while (CMCC->SR.bit.CSTS) {
}
CMCC->MAINT0.bit.INVALL = 1;
}
// Enable cache
static void samd_peripherals_enable_cache(void) {
CMCC->CTRL.bit.CEN = 1;
}
// Run a single QSPI instruction.
// Parameters are:
// - command instruction code
// - iframe iframe register value (configured by caller according to command code)
// - addr the address to read or write from. If the instruction doesn't require an address, this parameter is meaningless.
// - buffer pointer to the data to be written or stored depending on the type is Read or Write
// - size the number of bytes to read or write.
bool run_instruction(uint8_t command, uint32_t iframe, uint32_t addr, uint8_t *buffer, uint32_t size) {
samd_peripherals_disable_and_clear_cache();
uint8_t *qspi_mem = (uint8_t *)QSPI_AHB;
if (addr) {
qspi_mem += addr;
}
QSPI->INSTRCTRL.bit.INSTR = command;
QSPI->INSTRADDR.reg = addr;
QSPI->INSTRFRAME.reg = iframe;
// Dummy read of INSTRFRAME needed to synchronize.
// See Instruction Transmission Flow Diagram, figure 37.9, page 995
// and Example 4, page 998, section 37.6.8.5.
(volatile uint32_t)QSPI->INSTRFRAME.reg;
if (buffer && size) {
uint32_t const tfr_type = iframe & QSPI_INSTRFRAME_TFRTYPE_Msk;
if ((tfr_type == QSPI_INSTRFRAME_TFRTYPE_READ) || (tfr_type == QSPI_INSTRFRAME_TFRTYPE_READMEMORY)) {
memcpy(buffer, qspi_mem, size);
} else {
memcpy(qspi_mem, buffer, size);
}
}
__asm volatile ("dsb");
__asm volatile ("isb");
QSPI->CTRLA.reg = QSPI_CTRLA_ENABLE | QSPI_CTRLA_LASTXFER;
while (!QSPI->INTFLAG.bit.INSTREND) {
}
QSPI->INTFLAG.reg = QSPI_INTFLAG_INSTREND;
samd_peripherals_enable_cache();
return true;
}
bool run_command(uint8_t command) {
uint32_t iframe = QSPI_INSTRFRAME_WIDTH_SINGLE_BIT_SPI | QSPI_INSTRFRAME_ADDRLEN_24BITS |
QSPI_INSTRFRAME_TFRTYPE_READ | QSPI_INSTRFRAME_INSTREN;
return run_instruction(command, iframe, 0, NULL, 0);
}
bool read_command(uint8_t command, uint8_t *response, uint32_t len) {
uint32_t iframe = QSPI_INSTRFRAME_WIDTH_SINGLE_BIT_SPI | QSPI_INSTRFRAME_ADDRLEN_24BITS |
QSPI_INSTRFRAME_TFRTYPE_READ | QSPI_INSTRFRAME_INSTREN | QSPI_INSTRFRAME_DATAEN;
return run_instruction(command, iframe, 0, response, len);
}
bool read_memory_single(uint8_t command, uint32_t addr, uint8_t *response, uint32_t len) {
uint32_t iframe = QSPI_INSTRFRAME_WIDTH_SINGLE_BIT_SPI | QSPI_INSTRFRAME_ADDRLEN_24BITS |
QSPI_INSTRFRAME_TFRTYPE_READ | QSPI_INSTRFRAME_INSTREN | QSPI_INSTRFRAME_ADDREN |
QSPI_INSTRFRAME_DATAEN | QSPI_INSTRFRAME_DUMMYLEN(8);
return run_instruction(command, iframe, addr, response, len);
}
bool write_command(uint8_t command, uint8_t const *data, uint32_t len) {
uint32_t iframe = QSPI_INSTRFRAME_WIDTH_SINGLE_BIT_SPI | QSPI_INSTRFRAME_ADDRLEN_24BITS |
QSPI_INSTRFRAME_TFRTYPE_WRITE | QSPI_INSTRFRAME_INSTREN | (data != NULL ? QSPI_INSTRFRAME_DATAEN : 0);
return run_instruction(command, iframe, 0, (uint8_t *)data, len);
}
bool erase_command(uint8_t command, uint32_t address) {
// Sector Erase
uint32_t iframe = QSPI_INSTRFRAME_WIDTH_SINGLE_BIT_SPI | QSPI_INSTRFRAME_ADDRLEN_24BITS |
QSPI_INSTRFRAME_TFRTYPE_WRITE | QSPI_INSTRFRAME_INSTREN | QSPI_INSTRFRAME_ADDREN;
return run_instruction(command, iframe, address, NULL, 0);
}
bool read_memory_quad(uint8_t command, uint32_t addr, uint8_t *data, uint32_t len) {
uint32_t iframe = QSPI_INSTRFRAME_WIDTH_QUAD_OUTPUT | QSPI_INSTRFRAME_ADDRLEN_24BITS |
QSPI_INSTRFRAME_TFRTYPE_READMEMORY | QSPI_INSTRFRAME_INSTREN | QSPI_INSTRFRAME_ADDREN | QSPI_INSTRFRAME_DATAEN |
/*QSPI_INSTRFRAME_CRMODE |*/ QSPI_INSTRFRAME_DUMMYLEN(8);
return run_instruction(command, iframe, addr, data, len);
}
bool write_memory_quad(uint8_t command, uint32_t addr, uint8_t *data, uint32_t len) {
uint32_t iframe = QSPI_INSTRFRAME_WIDTH_QUAD_OUTPUT | QSPI_INSTRFRAME_ADDRLEN_24BITS |
QSPI_INSTRFRAME_TFRTYPE_WRITEMEMORY | QSPI_INSTRFRAME_INSTREN | QSPI_INSTRFRAME_ADDREN | QSPI_INSTRFRAME_DATAEN;
return run_instruction(command, iframe, addr, data, len);
}
static uint8_t read_status(void) {
uint8_t r;
read_command(QSPI_CMD_READ_STATUS, &r, 1);
return r;
}
static uint8_t read_status2(void) {
uint8_t r;
read_command(QSPI_CMD_READ_STATUS2, &r, 1);
return r;
}
static bool write_enable(void) {
return run_command(QSPI_CMD_WRITE_ENABLE);
}
static void wait_for_flash_ready(void) {
// both WIP and WREN bit should be clear
while (read_status() & 0x03) {
}
}
static uint8_t get_baud(int32_t freq_mhz) {
int baud = get_peripheral_freq() / (freq_mhz * 1000000) - 1;
if (baud < 1) {
baud = 1;
}
if (baud > 255) {
baud = 255;
}
return baud;
}
int get_sfdp_table(uint8_t *table, int maxlen) {
uint8_t header[16];
read_memory_single(QSPI_CMD_READ_SFDP_PARAMETER, 0, header, sizeof(header));
int len = MIN(header[11] * 4, maxlen);
int addr = header[12] + (header[13] << 8) + (header[14] << 16);
read_memory_single(QSPI_CMD_READ_SFDP_PARAMETER, addr, table, len);
return len;
}
STATIC mp_obj_t samd_qspiflash_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *all_args) {
mp_arg_check_num(n_args, n_kw, 0, 0, false);
// The QSPI is a singleton
samd_qspiflash_obj_t *self = &qspiflash_obj;
self->phase = 0;
self->polarity = 0;
self->pagesize = PAGE_SIZE;
self->sectorsize = SECTOR_SIZE;
// Enable the device clock
MCLK->AHBMASK.reg |= MCLK_AHBMASK_QSPI;
MCLK->AHBMASK.reg |= MCLK_AHBMASK_QSPI_2X;
MCLK->APBCMASK.reg |= MCLK_APBCMASK_QSPI;
// Configure the pins.
mp_hal_set_pin_mux(PIN_CS, ALT_FCT_QSPI);
mp_hal_set_pin_mux(PIN_SCK, ALT_FCT_QSPI);
mp_hal_set_pin_mux(PIN_IO0, ALT_FCT_QSPI);
mp_hal_set_pin_mux(PIN_IO1, ALT_FCT_QSPI);
mp_hal_set_pin_mux(PIN_IO2, ALT_FCT_QSPI);
mp_hal_set_pin_mux(PIN_IO3, ALT_FCT_QSPI);
// Configure the QSPI interface
QSPI->CTRLA.bit.SWRST = 1;
mp_hal_delay_us(1000); // Maybe not required.
QSPI->CTRLB.reg = QSPI_CTRLB_MODE_MEMORY |
QSPI_CTRLB_CSMODE_NORELOAD |
QSPI_CTRLB_DATALEN_8BITS |
QSPI_CTRLB_CSMODE_LASTXFER;
// start with low 4Mhz, Mode 0
QSPI->BAUD.reg = QSPI_BAUD_BAUD(get_baud(4)) |
(self->phase << QSPI_BAUD_CPHA_Pos) |
(self->polarity << QSPI_BAUD_CPOL_Pos);
QSPI->CTRLA.bit.ENABLE = 1;
uint8_t jedec_ids[3];
read_command(QSPI_CMD_READ_JEDEC_ID, jedec_ids, sizeof(jedec_ids));
// Read the common sfdp table
// Check the device addr length, support of 1-1-4 mode and get the sector size
uint8_t sfdp_table[128];
int len = get_sfdp_table(sfdp_table, sizeof(sfdp_table));
if (len >= 29) {
self->sectorsize = 1 << sfdp_table[28];
bool addr4b = ((sfdp_table[2] >> 1) & 0x03) == 0x02;
bool supports_qspi_114 = (sfdp_table[2] & 0x40) != 0;
if (addr4b || !supports_qspi_114) {
mp_raise_ValueError(MP_ERROR_TEXT("QSPI mode not supported"));
}
}
// Check, if the flash device is known and get it's properties.
flash_device = NULL;
for (uint8_t i = 0; i < EXTERNAL_FLASH_DEVICE_COUNT; i++) {
const external_flash_device *possible_device = &possible_devices[i];
if (jedec_ids[0] == possible_device->manufacturer_id &&
jedec_ids[1] == possible_device->memory_type &&
jedec_ids[2] == possible_device->capacity) {
flash_device = possible_device;
break;
}
}
// If the flash device is not known, try generic config options
if (flash_device == NULL) {
if (jedec_ids[0] == 0xc2) { // Macronix devices
generic_config.quad_enable_bit_mask = 0x04;
generic_config.single_status_byte = true;
}
generic_config.total_size = 1 << jedec_ids[2];
flash_device = &generic_config;
}
self->size = flash_device->total_size;
// The write in progress bit should be low.
while (read_status() & 0x01) {
}
// The suspended write/erase bit should be low.
while (read_status2() & 0x80) {
}
run_command(QSPI_CMD_ENABLE_RESET);
run_command(QSPI_CMD_RESET);
// Wait 30us for the reset
mp_hal_delay_us(30);
// Speed up the frequency
QSPI->BAUD.bit.BAUD = get_baud(flash_device->max_clock_speed_mhz);
// Enable Quad Mode if available
uint8_t status = 0;
if (flash_device->quad_enable_bit_mask) {
// Verify that QSPI mode is enabled.
status = flash_device->single_status_byte ? read_status() : read_status2();
}
// Check the quad enable bit.
if ((status & flash_device->quad_enable_bit_mask) == 0) {
write_enable();
uint8_t full_status[2] = {0x00, flash_device->quad_enable_bit_mask};
if (flash_device->write_status_register_split) {
write_command(QSPI_CMD_WRITE_STATUS2, full_status + 1, 1);
} else if (flash_device->single_status_byte) {
write_command(QSPI_CMD_WRITE_STATUS, full_status + 1, 1);
} else {
write_command(QSPI_CMD_WRITE_STATUS, full_status, 2);
}
}
// Turn off writes in case this is a microcontroller only reset.
run_command(QSPI_CMD_WRITE_DISABLE);
wait_for_flash_ready();
return self;
}
STATIC mp_obj_t samd_qspiflash_read(samd_qspiflash_obj_t *self, uint32_t addr, uint8_t *dest, uint32_t len) {
if (len > 0) {
wait_for_flash_ready();
// Command 0x6B 1 line address, 4 line Data
// with Continuous Read Mode and Quad output mode, read memory type
read_memory_quad(QSPI_CMD_QUAD_READ, addr, dest, len);
}
return mp_const_none;
}
STATIC mp_obj_t samd_qspiflash_write(samd_qspiflash_obj_t *self, uint32_t addr, uint8_t *src, uint32_t len) {
uint32_t length = len;
uint32_t pos = 0;
uint8_t *buf = src;
while (pos < length) {
uint16_t maxsize = self->pagesize - pos % self->pagesize;
uint16_t size = (length - pos) > maxsize ? maxsize : length - pos;
wait_for_flash_ready();
write_enable();
write_memory_quad(QSPI_CMD_QUAD_PAGE_PROGRAM, addr, buf + pos, size);
addr += size;
pos += size;
}
return mp_const_none;
}
STATIC mp_obj_t samd_qspiflash_erase(uint32_t addr) {
wait_for_flash_ready();
write_enable();
erase_command(QSPI_CMD_ERASE_SECTOR, addr);
return mp_const_none;
}
STATIC mp_obj_t samd_qspiflash_readblocks(size_t n_args, const mp_obj_t *args) {
samd_qspiflash_obj_t *self = MP_OBJ_TO_PTR(args[0]);
uint32_t offset = (mp_obj_get_int(args[1]) * self->sectorsize);
mp_buffer_info_t bufinfo;
mp_get_buffer_raise(args[2], &bufinfo, MP_BUFFER_WRITE);
if (n_args == 4) {
offset += mp_obj_get_int(args[3]);
}
// Read data to flash (adf4 API)
samd_qspiflash_read(self, offset, bufinfo.buf, bufinfo.len);
return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(samd_qspiflash_readblocks_obj, 3, 4, samd_qspiflash_readblocks);
STATIC mp_obj_t samd_qspiflash_writeblocks(size_t n_args, const mp_obj_t *args) {
samd_qspiflash_obj_t *self = MP_OBJ_TO_PTR(args[0]);
uint32_t offset = (mp_obj_get_int(args[1]) * self->sectorsize);
mp_buffer_info_t bufinfo;
mp_get_buffer_raise(args[2], &bufinfo, MP_BUFFER_READ);
if (n_args == 3) {
samd_qspiflash_erase(offset);
// TODO check return value
} else {
offset += mp_obj_get_int(args[3]);
}
// Write data to flash (adf4 API)
samd_qspiflash_write(self, offset, bufinfo.buf, bufinfo.len);
// TODO check return value
return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(samd_qspiflash_writeblocks_obj, 3, 4, samd_qspiflash_writeblocks);
STATIC mp_obj_t samd_qspiflash_ioctl(mp_obj_t self_in, mp_obj_t cmd_in, mp_obj_t arg_in) {
samd_qspiflash_obj_t *self = MP_OBJ_TO_PTR(self_in);
mp_int_t cmd = mp_obj_get_int(cmd_in);
switch (cmd) {
case MP_BLOCKDEV_IOCTL_INIT:
return MP_OBJ_NEW_SMALL_INT(0);
case MP_BLOCKDEV_IOCTL_DEINIT:
return MP_OBJ_NEW_SMALL_INT(0);
case MP_BLOCKDEV_IOCTL_SYNC:
return MP_OBJ_NEW_SMALL_INT(0);
case MP_BLOCKDEV_IOCTL_BLOCK_COUNT:
return MP_OBJ_NEW_SMALL_INT(self->size / self->sectorsize);
case MP_BLOCKDEV_IOCTL_BLOCK_SIZE:
return MP_OBJ_NEW_SMALL_INT(self->sectorsize);
case MP_BLOCKDEV_IOCTL_BLOCK_ERASE: {
samd_qspiflash_erase(mp_obj_get_int(arg_in) * self->sectorsize);
// TODO check return value
return MP_OBJ_NEW_SMALL_INT(0);
}
default:
return mp_const_none;
}
}
STATIC MP_DEFINE_CONST_FUN_OBJ_3(samd_qspiflash_ioctl_obj, samd_qspiflash_ioctl);
STATIC const mp_rom_map_elem_t samd_qspiflash_locals_dict_table[] = {
{ MP_ROM_QSTR(MP_QSTR_readblocks), MP_ROM_PTR(&samd_qspiflash_readblocks_obj) },
{ MP_ROM_QSTR(MP_QSTR_writeblocks), MP_ROM_PTR(&samd_qspiflash_writeblocks_obj) },
{ MP_ROM_QSTR(MP_QSTR_ioctl), MP_ROM_PTR(&samd_qspiflash_ioctl_obj) },
};
STATIC MP_DEFINE_CONST_DICT(samd_qspiflash_locals_dict, samd_qspiflash_locals_dict_table);
MP_DEFINE_CONST_OBJ_TYPE(
samd_qspiflash_type,
MP_QSTR_Flash,
MP_TYPE_FLAG_NONE,
make_new, samd_qspiflash_make_new,
locals_dict, &samd_qspiflash_locals_dict
);
#endif // MICROPY_HW_QSPI_FLASH