Skip to content

Latest commit

 

History

History
executable file
·
33 lines (22 loc) · 531 Bytes

README.md

File metadata and controls

executable file
·
33 lines (22 loc) · 531 Bytes

SVM

Simple implementation of a Support Vector Classification using the Sequential Minimal Optimization (SMO) algorithm for training.

Supported python versions:

  • Python 2.7
  • Python 3.4

Python package dependencies

  • Numpy

Documentation

Setup model (following parameters are default)

from SVCSMO import SVCSMO
model = SVCSMO(max_iter=10000, kernel_type='linear', C=1.0, epsilon=0.001)

Train model

model.fit(X, y)

Predict new observations

y_hat = model.predict(X_test)