-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathtrainer.py
executable file
·695 lines (571 loc) · 22.9 KB
/
trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
# -*- coding: utf-8 -*- #
"""*********************************************************************************************"""
# FileName [ trainer.py ]
# Synopsis [ training algorithms ]
# Author [ Ting-Wei Liu (Andi611) ]
# Copyright [ Copyleft(c), NTUEE, NTU, Taiwan ]
"""*********************************************************************************************"""
###############
# IMPORTATION #
###############
import os
import pickle
import numpy as np
import torch
import torch.nn.functional as F
from hps.hps import hp
from torch import nn
from torch import optim
from torch.autograd import Variable
from model.model import Encoder, Decoder
from model.model import TargetClassifier
from model.model import SpeakerClassifier
from model.model import PatchDiscriminator
from model.model import Enhanced_Generator, Spectrogram_Patcher
from model.tacotron_integrate.tacotron import Tacotron, learning_rate_decay
from model.tacotron_integrate.loss import TacotronLoss
from utils import Logger, cc, to_var
from utils import grad_clip, reset_grad
from utils import calculate_gradients_penalty
class Trainer(object):
def __init__(self, hps, data_loader, g_mode, enc_mode, log_dir='./log/'):
self.hps = hps
self.data_loader = data_loader
self.model_kept = []
self.max_keep = hps.max_to_keep
self.logger = Logger(log_dir)
self.g_mode = g_mode
self.enc_mode = enc_mode
if self.g_mode != 'naive':
self.shift_c = to_var(torch.from_numpy(np.array([int(hps.n_speakers-hps.n_target_speakers) \
for _ in range(hps.batch_size)])), requires_grad=False)
self.build_model()
def build_model(self):
hps = self.hps
ns = self.hps.ns
enc_mode = self.enc_mode
seg_len = self.hps.seg_len
enc_size = self.hps.enc_size
emb_size = self.hps.emb_size
betas = (0.5, 0.9)
#---stage one---#
self.Encoder = cc(Encoder(ns=ns, dp=hps.enc_dp, enc_size=enc_size, seg_len=seg_len, enc_mode=enc_mode))
self.Decoder = cc(Decoder(ns=ns, c_in=enc_size, c_h=emb_size, c_a=hps.n_speakers, seg_len=seg_len))
self.SpeakerClassifier = cc(SpeakerClassifier(ns=ns, c_in=enc_size * enc_size if enc_mode == 'binary' else \
(2*enc_size if enc_mode == 'multilabel_binary' else enc_size), \
c_h=emb_size, n_class=hps.n_speakers, dp=hps.dis_dp, seg_len=seg_len))
#---stage one opts---#
params = list(self.Encoder.parameters()) + list(self.Decoder.parameters())
self.ae_opt = optim.Adam(params, lr=self.hps.lr, betas=betas)
self.clf_opt = optim.Adam(self.SpeakerClassifier.parameters(), lr=self.hps.lr, betas=betas)
#---stage two---#
if self.g_mode == 'naive':
self.Generator = cc(Decoder(ns=ns, c_in=enc_size, c_h=emb_size, c_a=hps.n_speakers, seg_len=seg_len))
elif self.g_mode == 'targeted' or self.g_mode == 'targeted_residual':
self.Generator = cc(Decoder(ns=ns, c_in=enc_size, c_h=emb_size, c_a=hps.n_target_speakers, seg_len=seg_len, \
output_mask=True if self.g_mode == 'targeted_residual' else False))
elif self.g_mode == 'enhanced':
self.Generator = cc(Enhanced_Generator(ns=ns, dp=hps.enc_dp, enc_size=1024, emb_size=1024, seg_len=seg_len, n_speakers=hps.n_speakers))
elif self.g_mode == 'spectrogram':
self.Generator = cc(Spectrogram_Patcher(ns=ns, c_in=513, c_h=emb_size, c_a=hps.n_target_speakers, seg_len=seg_len))
elif self.g_mode == 'tacotron':
self.Generator = cc(Tacotron(enc_size, hps.n_target_speakers, mel_dim=hp.n_mels, linear_dim=int(hp.n_fft/2)+1))
self.tacotron_input_lengths = torch.tensor([self.hps.seg_len//8 for _ in range(hps.batch_size)])
else:
raise NotImplementedError('Invalid Generator mode!')
self.PatchDiscriminator = cc(nn.DataParallel(PatchDiscriminator(ns=ns, n_class=hps.n_speakers \
if self.g_mode == 'naive' else hps.n_target_speakers,
seg_len=seg_len)))
#---stage two opts---#
self.gen_opt = optim.Adam(self.Generator.parameters(), lr=self.hps.lr, betas=betas)
self.patch_opt = optim.Adam(self.PatchDiscriminator.parameters(), lr=self.hps.lr, betas=betas)
#---target classifier---#
self.TargetClassifier = cc(nn.DataParallel(TargetClassifier(ns=ns, n_class=3, seg_len=seg_len)))
#---target classifier opts---#
self.tclf_opt = optim.Adam(self.TargetClassifier.parameters(), lr=self.hps.lr, betas=betas)
def reset_keep(self):
self.model_kept = []
def save_model(self, model_path, name, iteration, model_all=True):
if model_all:
all_model = {
'encoder': self.Encoder.state_dict(),
'decoder': self.Decoder.state_dict(),
'generator': self.Generator.state_dict(),
'classifier': self.SpeakerClassifier.state_dict(),
'patch_discriminator': self.PatchDiscriminator.state_dict(),
'target_classifier': self.TargetClassifier.state_dict(),
}
else:
all_model = {
'encoder': self.Encoder.state_dict(),
'decoder': self.Decoder.state_dict(),
'generator': self.Generator.state_dict(),
}
new_model_path = '{}-{}-{}'.format(model_path, name, iteration)
torch.save(all_model, new_model_path)
self.model_kept.append(new_model_path)
if len(self.model_kept) >= self.max_keep:
os.remove(self.model_kept[0])
self.model_kept.pop(0)
def load_model(self, model_path, load_model_list, verbose=True, clf_path = None):
if verbose: print('[Trainer] - load model from {}'.format(model_path))
load_model_list = load_model_list.split(', ')
all_model = torch.load(model_path)
if verbose: print('[Trainer] - ', end = '')
if 'encoder' in load_model_list:
try:
self.Encoder.load_state_dict(all_model['encoder'])
if verbose: print('[encoder], ', end = '')
except: print('[encoder - X], ', end = '')
if 'decoder' in load_model_list:
try:
self.Decoder.load_state_dict(all_model['decoder'])
if verbose: print('[decoder], ', end = '')
except: print('[generator - X], ', end = '')
if 'generator' in load_model_list:
try:
self.Generator.load_state_dict(all_model['generator'])
if verbose: print('[generator], ', end = '')
except: print('[generator - X], ', end = '')
if 'classifier' in load_model_list:
try:
self.SpeakerClassifier.load_state_dict(all_model['classifier'])
if verbose: print('[classifier], ', end = '')
except: print('[classifier - X], ', end = '')
if 'patch_discriminator' in load_model_list:
try:
self.PatchDiscriminator.load_state_dict(all_model['patch_discriminator'])
if verbose: print('[patch_discriminator], ', end = '')
except: print('[patch_discriminator - X], ', end = '')
if 'target_classifier' in load_model_list:
try:
if clf_path != None:
clf_model = torch.load(clf_path)
self.TargetClassifier.load_state_dict(clf_model['target_classifier'])
if verbose: print('[target_classifier_another], ', end = '')
else:
self.TargetClassifier.load_state_dict(all_model['target_classifier'])
if verbose: print('[target_classifier], ', end = '')
except: print('[target_classifier - X], ', end = '')
if verbose: print('Loaded!')
def add_duo_loader(self, source_loader, target_loader):
self.source_loader = source_loader
self.target_loader = target_loader
def switch_loader(self, new_loader):
self.data_loader = new_loader
def set_eval(self):
self.testing_shift_c = Variable(torch.from_numpy(np.array([int(self.hps.n_speakers-self.hps.n_target_speakers)]))).cuda()
self.Encoder.eval()
self.Decoder.eval()
self.SpeakerClassifier.eval()
self.PatchDiscriminator.eval()
self.TargetClassifier.eval()
if self.g_mode == 'tacotron': # keep dropout in Tacotron's decoder
self.Generator.encoder.eval()
self.Generator.postnet.eval()
else:
self.Generator.eval()
def test_step(self, x, c, enc_only=False, verbose=True):
self.set_eval()
x = to_var(x).permute(0, 2, 1)
enc, _ = self.Encoder(x)
if enc_only or self.g_mode != 'tacotron':
x_dec = self.Decoder(enc, c)
if not enc_only:
if verbose: print('Testing with Autoencoder + Generator, encoding: ', enc.data.cpu().numpy())
if self.g_mode != 'naive' and (c - self.testing_shift_c).data.cpu().numpy()[0] not in range(self.hps.n_target_speakers):
raise RuntimeError('This generator can only convert to target speakers!')
#---select Generator mode---#
if self.g_mode == 'naive':
x_dec += self.Generator(enc, c)
elif self.g_mode == 'targeted':
x_dec += self.Generator(enc, c - self.testing_shift_c)
elif self.g_mode == 'targeted_residual':
x_dec = (x_dec * 1.0) + (1.0 * x_dec * self.Generator(enc, c - self.testing_shift_c))
elif self.g_mode == 'enhanced' or self.g_mode == 'spectrogram':
x_dec += self.Generator(x_dec, c - self.testing_shift_c)
elif self.g_mode == 'tacotron':
_, x_dec = self.Generator(enc, targets=None, speaker_id=(c - self.testing_shift_c), input_lengths=None)
else:
raise NotImplementedError('Invalid Generator mode!')
else:
if verbose: print('Testing with Autoencoder only, encoding: ', enc.data.cpu().numpy())
return x_dec.data.cpu().numpy(), enc.data.cpu().numpy()
def encoder_test_step(self, x):
self.set_eval()
x = to_var(x).permute(0, 2, 1)
enc, _ = self.Encoder(x)
return enc.data.cpu().numpy()
def classify(self, x):
self.set_eval()
x = to_var(x).permute(0, 2, 1)
logits = self.TargetClassifier(x)
return logits.data.cpu().numpy()
def permute_data(self, data, load_mel=False):
C = to_var(data[0], requires_grad=False)
X = to_var(data[1]).permute(0, 2, 1)
if load_mel:
M = to_var(data[2]).permute(0, 2, 1)
return C, X, M
return C, X
def encode_step(self, x):
enc_act, enc = self.Encoder(x)
return enc_act, enc
def decode_step(self, enc, c):
x_dec = self.Decoder(enc, c)
return x_dec
def patch_step(self, x, x_dec, is_dis=True):
D_real, real_logits = self.PatchDiscriminator(x, classify=True)
D_fake, fake_logits = self.PatchDiscriminator(x_dec, classify=True)
if is_dis:
w_dis = torch.mean(D_real - D_fake)
gp = calculate_gradients_penalty(self.PatchDiscriminator, x, x_dec)
return w_dis, real_logits, gp
else:
return -torch.mean(D_fake), fake_logits
def tclf_step(self, x):
logits = self.TargetClassifier(x)
return logits
def gen_step(self, enc, c):
x_dec = self.Decoder(enc, c)
if self.g_mode == 'naive':
x_gen = x_dec + self.Generator(enc, c)
elif self.g_mode == 'targeted':
x_gen = x_dec + self.Generator(enc, c - self.shift_c)
elif self.g_mode == 'targeted_residual':
x_gen = (x_dec + (x_dec * self.Generator(enc, c - self.shift_c)))
elif self.g_mode == 'enhanced' or self.g_mode == 'spectrogram':
x_gen = x_dec + self.Generator(x_dec, c - self.shift_c)
else:
raise NotImplementedError('Invalid generator mode to call gen_step()!')
return x_gen
def clf_step(self, enc):
logits = self.SpeakerClassifier(enc)
return logits
def tacotron_step(self, enc, m, c):
m_dec, x_dec = self.Generator(enc, m, c - self.shift_c, input_lengths=self.tacotron_input_lengths)
return m_dec, x_dec # mel, linear
def cal_loss(self, logits, y_true, shift=False):
# calculate loss
criterion = nn.CrossEntropyLoss()
if shift and self.g_mode != 'naive':
loss = criterion(logits, y_true - self.shift_c)
else:
loss = criterion(logits, y_true)
return loss
def cal_acc(self, logits, y_true, shift=False):
_, ind = torch.max(logits, dim=1)
if shift:
acc = torch.sum((ind == y_true - self.shift_c).type(torch.FloatTensor)) / y_true.size(0)
else:
acc = torch.sum((ind == y_true).type(torch.FloatTensor)) / y_true.size(0)
return acc
def train(self, model_path, flag='train', mode='train', target_guided=False):
# load hyperparams
hps = self.hps
if mode == 'pretrain_AE':
for iteration in range(hps.enc_pretrain_iters):
data = next(self.data_loader)
c, x = self.permute_data(data)
# encode
enc_act, enc = self.encode_step(x)
x_dec = self.decode_step(enc_act, c)
loss_rec = torch.mean(torch.abs(x_dec - x))
reset_grad([self.Encoder, self.Decoder])
loss_rec.backward()
grad_clip([self.Encoder, self.Decoder], hps.max_grad_norm)
self.ae_opt.step()
# tb info
info = {
f'{flag}/pre_loss_rec': loss_rec.item(),
}
slot_value = (iteration + 1, hps.enc_pretrain_iters) + tuple([value for value in info.values()])
log = 'pre_AE:[%06d/%06d], loss_rec=%.3f'
print(log % slot_value, end='\r')
if iteration % 100 == 0:
for tag, value in info.items():
self.logger.scalar_summary(tag, value, iteration + 1)
if (iteration + 1) % 1000 == 0:
self.save_model(model_path, 'ae', iteration + 1)
print()
elif mode == 'pretrain_C':
for iteration in range(hps.dis_pretrain_iters):
data = next(self.data_loader)
c, x = self.permute_data(data)
# encode
enc_act, enc = self.encode_step(x)
# classify speaker
logits = self.clf_step(enc)
loss_clf = self.cal_loss(logits, c)
# update
reset_grad([self.SpeakerClassifier])
loss_clf.backward()
grad_clip([self.SpeakerClassifier], hps.max_grad_norm)
self.clf_opt.step()
# calculate acc
acc = self.cal_acc(logits, c)
info = {
f'{flag}/pre_loss_clf': loss_clf.item(),
f'{flag}/pre_acc': acc,
}
slot_value = (iteration + 1, hps.dis_pretrain_iters) + tuple([value for value in info.values()])
log = 'pre_C:[%06d/%06d], loss_clf=%.2f, acc=%.2f'
print(log % slot_value, end='\r')
if iteration % 100 == 0:
for tag, value in info.items():
self.logger.scalar_summary(tag, value, iteration + 1)
if (iteration + 1) % 1000 == 0:
self.save_model(model_path, 'c', iteration + 1)
print()
elif mode == 'train':
for iteration in range(hps.iters):
# calculate current alpha
if iteration < hps.lat_sched_iters:
current_alpha = hps.alpha_enc * (iteration / hps.lat_sched_iters)
else:
current_alpha = hps.alpha_enc
#==================train D==================#
for step in range(hps.n_latent_steps):
data = next(self.data_loader)
c, x = self.permute_data(data)
# encode
enc_act, enc = self.encode_step(x)
# classify speaker
logits = self.clf_step(enc)
loss_clf = self.cal_loss(logits, c)
loss = hps.alpha_dis * loss_clf
# update
reset_grad([self.SpeakerClassifier])
loss.backward()
grad_clip([self.SpeakerClassifier], hps.max_grad_norm)
self.clf_opt.step()
# calculate acc
acc = self.cal_acc(logits, c)
info = {
f'{flag}/D_loss_clf': loss_clf.item(),
f'{flag}/D_acc': acc,
}
slot_value = (step, iteration + 1, hps.iters) + tuple([value for value in info.values()])
log = 'D-%d:[%06d/%06d], loss_clf=%.2f, acc=%.2f'
print(log % slot_value, end='\r')
if iteration % 100 == 0:
for tag, value in info.items():
self.logger.scalar_summary(tag, value, iteration + 1)
#==================train G==================#
data = next(self.data_loader)
c, x = self.permute_data(data)
# encode
enc_act, enc = self.encode_step(x)
# decode
x_dec = self.decode_step(enc_act, c)
loss_rec = torch.mean(torch.abs(x_dec - x))
# classify speaker
logits = self.clf_step(enc)
acc = self.cal_acc(logits, c)
loss_clf = self.cal_loss(logits, c)
# maximize classification loss
loss = loss_rec - current_alpha * loss_clf
reset_grad([self.Encoder, self.Decoder])
loss.backward()
grad_clip([self.Encoder, self.Decoder], hps.max_grad_norm)
self.ae_opt.step()
info = {
f'{flag}/loss_rec': loss_rec.item(),
f'{flag}/G_loss_clf': loss_clf.item(),
f'{flag}/alpha': current_alpha,
f'{flag}/G_acc': acc,
}
slot_value = (iteration + 1, hps.iters) + tuple([value for value in info.values()])
log = 'G:[%06d/%06d], loss_rec=%.3f, loss_clf=%.2f, alpha=%.2e, acc=%.2f'
print(log % slot_value, end='\r')
if iteration % 100 == 0:
for tag, value in info.items():
self.logger.scalar_summary(tag, value, iteration + 1)
if (iteration + 1) % 1000 == 0:
self.save_model(model_path, 's1', iteration + 1)
print()
elif mode == 'patchGAN':
for iteration in range(hps.patch_iters):
#==================train D==================#
for step in range(hps.n_patch_steps):
data_s = next(self.source_loader)
data_t = next(self.target_loader)
_, x_s = self.permute_data(data_s)
c_t, x_t = self.permute_data(data_t)
# encode
enc_act, _ = self.encode_step(x_s)
# generator
x_dec = self.gen_step(enc_act, c_t)
# discriminstor
w_dis, real_logits, gp = self.patch_step(x_t, x_dec, is_dis=True)
# aux classification loss
loss_clf = self.cal_loss(real_logits, c_t, shift=True)
loss = -hps.beta_dis * w_dis + hps.beta_clf * loss_clf + hps.lambda_ * gp
reset_grad([self.PatchDiscriminator])
loss.backward()
grad_clip([self.PatchDiscriminator], hps.max_grad_norm)
self.patch_opt.step()
# calculate acc
acc = self.cal_acc(real_logits, c_t, shift=True)
info = {
f'{flag}/w_dis': w_dis.item(),
f'{flag}/gp': gp.item(),
f'{flag}/real_loss_clf': loss_clf.item(),
f'{flag}/real_acc': acc,
}
slot_value = (step, iteration+1, hps.patch_iters) + tuple([value for value in info.values()])
log = 'patch_D-%d:[%06d/%06d], w_dis=%.2f, gp=%.2f, loss_clf=%.2f, acc=%.2f'
print(log % slot_value, end='\r')
if iteration % 100 == 0:
for tag, value in info.items():
self.logger.scalar_summary(tag, value, iteration + 1)
#==================train G==================#
data_s = next(self.source_loader)
data_t = next(self.target_loader)
_, x_s = self.permute_data(data_s)
c_t, x_t = self.permute_data(data_t)
# encode
enc_act, _ = self.encode_step(x_s)
# generator
x_dec = self.gen_step(enc_act, c_t)
# discriminstor
loss_adv, fake_logits = self.patch_step(x_t, x_dec, is_dis=False)
# aux classification loss
loss_clf = self.cal_loss(fake_logits, c_t, shift=True)
loss = hps.beta_clf * loss_clf + hps.beta_gen * loss_adv
reset_grad([self.Generator])
loss.backward()
grad_clip([self.Generator], hps.max_grad_norm)
self.gen_opt.step()
if target_guided:
# teacher forcing
enc_tf, _ = self.encode_step(x_t)
x_dec_tf = self.gen_step(enc_tf, c_t)
loss_rec = torch.mean(torch.abs(x_dec_tf - x_t))
reset_grad([self.Generator])
loss_rec.backward()
self.gen_opt.step()
# calculate acc
acc = self.cal_acc(fake_logits, c_t, shift=True)
info = {
f'{flag}/loss_adv': loss_adv.item(),
f'{flag}/fake_loss_clf': loss_clf.item(),
f'{flag}/fake_acc': acc,
f'{flag}/tg_rec': loss_rec.item() if target_guided else 0.000,
}
slot_value = (iteration+1, hps.patch_iters) + tuple([value for value in info.values()])
log = 'patch_G:[%06d/%06d], loss_adv=%.2f, loss_clf=%.2f, acc=%.2f, tg_rec=%.3f'
print(log % slot_value, end='\r')
if iteration % 100 == 0:
for tag, value in info.items():
self.logger.scalar_summary(tag, value, iteration + 1)
if (iteration + 1) % 1000 == 0:
self.save_model(model_path, 's2', iteration + 1)
print()
elif mode == 'autolocker':
criterion = torch.nn.BCELoss()
for iteration in range(hps.patch_iters):
#==================train G==================#
data_s = next(self.source_loader)
data_t = next(self.target_loader)
_, x_s = self.permute_data(data_s)
c_t, x_t = self.permute_data(data_t)
# encode
enc_act, _ = self.encode_step(x_s)
# decode
residual_output = self.gen_step(enc_act, c_t)
# re-encode
re_enc, _ = self.encode_step(residual_output)
# re-encode loss
loss_reenc = criterion(re_enc, enc_act.data)
reset_grad([self.Encoder, self.Decoder, self.Generator])
loss_reenc.backward()
grad_clip([self.Generator], hps.max_grad_norm)
self.gen_opt.step()
if target_guided:
# teacher forcing
enc_tf, _ = self.encode_step(x_t)
x_dec_tf = self.gen_step(enc_tf, c_t)
loss_rec = torch.mean(torch.abs(x_dec_tf - x_t))
reset_grad([self.Encoder, self.Decoder, self.Generator])
loss_rec.backward()
self.gen_opt.step()
# calculate acc
info = {
f'{flag}/re_enc': loss_reenc.item(),
f'{flag}/tg_rec': loss_rec.item() if target_guided else 0.000,
}
slot_value = (iteration+1, hps.patch_iters) + tuple([value for value in info.values()])
log = 'patch_G:[%06d/%06d], re_enc=%.3f, tg_rec=%.3f'
print(log % slot_value, end='\r')
if iteration % 100 == 0:
for tag, value in info.items():
self.logger.scalar_summary(tag, value, iteration + 1)
if (iteration + 1) % 1000 == 0:
self.save_model(model_path, 's2', iteration + 1)
print()
elif mode == 't_classify':
for iteration in range(hps.tclf_iters):
#======train target classifier======#
data = next(self.data_loader)
c, x = self.permute_data(data)
c[c < 100] = 102
# classification
logits = self.tclf_step(x)
# classification loss
loss = self.cal_loss(logits, c-self.shift_c)
reset_grad([self.TargetClassifier])
loss.backward()
grad_clip([self.TargetClassifier], hps.max_grad_norm)
self.tclf_opt.step()
# calculate acc
acc = self.cal_acc(logits, c-self.shift_c)
info = {
f'{flag}/acc': acc,
}
slot_value = (iteration+1, hps.tclf_iters) + tuple([value for value in info.values()])
log = 'Target Classifier:[%05d/%05d], acc=%.2f'
print(log % slot_value, end='\r')
if iteration % 100 == 0:
for tag, value in info.items():
self.logger.scalar_summary(tag, value, iteration + 1)
if (iteration + 1) % 1000 == 0:
self.save_model(model_path, 'tclf', iteration + 1)
print()
elif mode == 'train_Tacotron':
assert self.g_mode == 'tacotron'
criterion = TacotronLoss()
self.Encoder.eval()
for iteration in range(hps.tacotron_iters):
#======train tacotron======#
cur_lr = learning_rate_decay(init_lr=0.002, global_step=iteration)
for param_group in self.gen_opt.param_groups:
param_group['lr'] = cur_lr
data = next(self.data_loader)
c, x, m = self.permute_data(data, load_mel=True)
# encode
enc_act, enc = self.encode_step(x)
# tacotron synthesis
m_dec, x_dec = self.tacotron_step(enc_act.data, m, c)
# reconstruction loss
loss_rec = criterion([m_dec, x_dec], [m, x])
reset_grad([self.Generator])
loss_rec.backward()
grad_clip([self.Generator], hps.max_grad_norm)
self.gen_opt.step()
# tb info
info = {
f'{flag}/tacotron_loss_rec': loss_rec.item(),
f'{flag}/tacotron_lr': cur_lr,
}
slot_value = (iteration + 1, hps.tacotron_iters) + tuple([value for value in info.values()])
log = 'train_Tacotron:[%06d/%06d], loss_rec=%.3f, lr=%.2e'
print(log % slot_value, end='\r')
if iteration % 100 == 0:
for tag, value in info.items():
self.logger.scalar_summary(tag, value, iteration + 1)
if (iteration + 1) % 1000 == 0:
self.save_model(model_path, 't', iteration + 1)
print()
else:
raise NotImplementedError()