-
Notifications
You must be signed in to change notification settings - Fork 50
/
Copy pathad9361_fmcomms5_phase_sync.c
600 lines (513 loc) · 17.2 KB
/
ad9361_fmcomms5_phase_sync.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
/*
* Copyright (C) 2017 Analog Devices, Inc.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*/
#include "ad9361.h"
#include <errno.h>
#include <iio.h>
#include <stdio.h>
#ifdef _WIN32
#include <windows.h>
#else
#include <unistd.h>
#include <time.h>
#endif
#ifndef M_PI
#define M_PI 3.14159265358979323846
#endif
#include <math.h>
#include <stdbool.h>
#include <stdint.h>
#include <string.h>
#ifdef _MSC_BUILD
#define snprintf sprintf_s
#endif
// Device names
#define DEV_RX_NAME "cf-ad9361-A"
#define DEV_RX_SLAVE_NAME "cf-ad9361-B"
#define DEV_TX_NAME "cf-ad9361-dds-core-lpc"
#define DEV_TX_SLAVE_NAME "cf-ad9361-dds-core-B"
#define DEV_PHY_NAME "ad9361-phy"
#define DEV_PHY_SLAVE_NAME "ad9361-phy-B"
#define DDS_SCALE 0.2
#define SAMPLES 8192
#define TOLERANCE 0.01 // Degrees
#define CALIBRATE_TRIES 30
#define STEP_SIZE 0.5
#define M_2PI 2 * M_PI
#define STALE_BUFFERS 20
// DEBUG = 0 Off
// DEBUG = 1 Verbose
// DEBUG = 2 More verbose
#define DEBUG 0
// Set to 1 if external splitter is connected to all receive chains,
// this does not calibrate the transmitters. This is useful if you want to
// calibrate from a the SMA connectors
#define EXTERNAL_REFERENCE_TONE 0
#define CHECK(expr) \
if (expr < 0) { \
return expr; \
}
static struct iio_device *dev_phy, *dev_phy_slave;
static struct iio_device *dev_rx, *dev_rx_slave;
static struct iio_device *dev_tx, *dev_tx_slave;
static struct iio_channel *dds_out[2][8];
static struct iio_buffer *rxbuf;
static struct iio_channel *rxa_chan_real, *rxa_chan_imag;
static struct iio_channel *rxb_chan_real, *rxb_chan_imag;
static void ad9361_sleep_ms(void)
{
#ifdef _WIN32
Sleep(1); /* milliseconds */
#else
struct timespec time;
time.tv_sec = 0;
time.tv_nsec = 1000 * 1000;
nanosleep(&time, NULL);
#endif
}
double scale_phase_0_360(double val)
{
if (val >= 360.0)
val -= 360.0;
if (val < 0)
val += 360.0;
return val;
}
void dds_tx_phase_rotation(struct iio_device *dev, double val)
{
long long i, q;
int d, j;
if (dev == dev_tx_slave)
d = 1;
else
d = 0;
i = scale_phase_0_360(val + 90.0) * 1000;
q = scale_phase_0_360(val) * 1000;
for (j = 0; j < 8; j++) {
switch (j) {
case 0:
case 1:
case 4:
case 5:
iio_channel_attr_write_longlong(dds_out[d][j], "phase", i);
break;
default:
iio_channel_attr_write_longlong(dds_out[d][j], "phase", q);
}
}
}
double calculate_phase(int16_t *a, int16_t *b, int16_t *c, int16_t *d,
int samples)
{
// Fast phase estimation with complex signals handling wrapped phase
int k = 0;
double real = 0, imag = 0;
for (; k < samples; k++) {
real += ((double)a[k] * (double)c[k] + (double)b[k] * (double)d[k]);
imag += ((double)a[k] * (double)d[k] - (double)b[k] * (double)c[k]);
}
return atan2(imag, real);
}
void near_end_loopback_ctrl(unsigned channel, bool enable)
{
unsigned tmp;
struct iio_device *dev = (channel > 3) ? dev_rx : dev_rx_slave;
if (!dev)
return;
if (channel > 3)
channel -= 4;
if (iio_device_reg_read(dev, 0x80000418 + channel * 0x40, &tmp))
return;
if (enable)
tmp |= 0x1;
else
tmp &= ~0xF;
iio_device_reg_write(dev, 0x80000418 + channel * 0x40, tmp);
}
void configure_ports(unsigned val)
{
unsigned lp_slave, lp_master, sw;
char *rx_port, *tx_port;
// https://wiki.analog.com/resources/eval/user-guides/ad-fmcomms5-ebz/multi-chip-sync#rf_phase_difference
/*
* 0 DISABLE: Use RF ports
* 1 TX1B_B (HPC) -> RX1C_B (HPC) : BIST_LOOPBACK on A
* 2 TX1B_A (LPC) -> RX1C_B (HPC) : BIST_LOOPBACK on A
* 3 TX1B_B (HPC) -> RX1C_A (LPC) : BIST_LOOPBACK on B
* 4 TX1B_A (LPC) -> RX1C_A (LPC) : BIST_LOOPBACK on B
*
*/
switch (val) {
default:
case 0:
lp_slave = 0;
lp_master = 0;
sw = 0;
tx_port = "A";
rx_port = "A_BALANCED";
break;
case 1:
case 2: //
lp_slave = 0;
lp_master = 1;
sw = val - 1;
tx_port = "B";
#if EXTERNAL_REFERENCE_TONE
rx_port = "A_BALANCED";
#else
rx_port = "C_BALANCED";
#endif
break;
case 3:
case 4:
lp_slave = 1;
lp_master = 0;
sw = val - 1;
tx_port = "B";
#if EXTERNAL_REFERENCE_TONE
rx_port = "A_BALANCED";
#else
rx_port = "C_BALANCED";
#endif
break;
}
// Set up ports for FPGA BIST Loopback
near_end_loopback_ctrl(0, lp_slave); /* HPC */
near_end_loopback_ctrl(1, lp_slave); /* HPC */
near_end_loopback_ctrl(4, lp_master); /* LPC */
near_end_loopback_ctrl(5, lp_master); /* LPC */
// Configure ADG918 switches
#if !EXTERNAL_REFERENCE_TONE
iio_device_debug_attr_write_longlong(dev_phy, "calibration_switch_control",
sw);
#endif
// Map ports to switch orientation
iio_channel_attr_write(iio_device_find_channel(dev_phy, "voltage0", false),
"rf_port_select", rx_port);
iio_channel_attr_write(iio_device_find_channel(dev_phy, "voltage0", true),
"rf_port_select", tx_port);
iio_channel_attr_write(
iio_device_find_channel(dev_phy_slave, "voltage0", false),
"rf_port_select", rx_port);
iio_channel_attr_write(
iio_device_find_channel(dev_phy_slave, "voltage0", true),
"rf_port_select", tx_port);
}
int trx_phase_rotation(struct iio_device *dev, double val)
{
struct iio_channel *out0, *out1;
double phase, vcos, vsin;
unsigned offset;
int ret;
bool output = (dev == dev_tx_slave) || (dev == dev_tx);
phase = val * 2 * M_PI / 360.0;
vcos = cos(phase);
vsin = sin(phase);
if (output) {
double corr;
corr = 1.0 /
fmax(fabs(sin(phase) + cos(phase)), fabs(cos(phase) - sin(phase)));
vcos *= corr;
vsin *= corr;
}
/* Set both RX1 and RX2 */
for (offset = 0; offset <= 2; offset += 2) {
if (offset == 2) {
out0 = iio_device_find_channel(dev, "voltage2", output);
out1 = iio_device_find_channel(dev, "voltage3", output);
} else {
out0 = iio_device_find_channel(dev, "voltage0", output);
out1 = iio_device_find_channel(dev, "voltage1", output);
}
if ((out0 == NULL) || (out0 == NULL))
return -ENODEV;
if (out1 && out0) {
ret = iio_channel_attr_write_double(out0, "calibscale", (double)vcos);
CHECK(ret);
ret = iio_channel_attr_write_double(out0, "calibphase", (double)(-1.0 * vsin));
CHECK(ret);
ret = iio_channel_attr_write_double(out1, "calibscale", (double)vcos);
CHECK(ret);
ret = iio_channel_attr_write_double(out1, "calibphase", (double)vsin);
CHECK(ret);
}
}
return 0;
}
int streaming_interfaces(bool enable)
{
if (enable) {
rxa_chan_real = iio_device_find_channel(dev_rx, "voltage0", false);
rxa_chan_imag = iio_device_find_channel(dev_rx, "voltage1", false);
rxb_chan_real = iio_device_find_channel(dev_rx, "voltage4", false);
rxb_chan_imag = iio_device_find_channel(dev_rx, "voltage5", false);
if (!(rxa_chan_real && rxa_chan_imag && rxb_chan_real && rxb_chan_imag))
streaming_interfaces(false);
iio_channel_enable(rxa_chan_real);
iio_channel_enable(rxa_chan_imag);
iio_channel_enable(rxb_chan_real);
iio_channel_enable(rxb_chan_imag);
rxbuf = iio_device_create_buffer(dev_rx, SAMPLES, false);
if (!rxbuf)
streaming_interfaces(false);
} else {
if (rxbuf) {
iio_buffer_destroy(rxbuf);
}
if (rxa_chan_real) {
iio_channel_disable(rxa_chan_real);
}
if (rxa_chan_imag) {
iio_channel_disable(rxa_chan_imag);
}
if (rxb_chan_real) {
iio_channel_disable(rxb_chan_real);
}
if (rxb_chan_imag) {
iio_channel_disable(rxb_chan_imag);
}
return -1;
}
return 0;
}
void read_buffer_data(struct iio_channel *chn, struct iio_buffer *buf,
void *dst, size_t len)
{
uintptr_t src_ptr, dst_ptr = (uintptr_t)dst, end = dst_ptr + len;
unsigned int bytes = iio_channel_get_data_format(chn)->length / 8;
uintptr_t buf_end = (uintptr_t)iio_buffer_end(buf);
ptrdiff_t buf_step = iio_buffer_step(buf);
for (src_ptr = (uintptr_t)iio_buffer_first(buf, chn);
src_ptr < buf_end && dst_ptr + bytes <= end;
src_ptr += buf_step, dst_ptr += bytes)
iio_channel_convert(chn, (void *)dst_ptr, (const void *)src_ptr);
}
double estimate_phase_diff(double *estimate)
{
ssize_t nbytes_rx = iio_buffer_refill(rxbuf);
if (!nbytes_rx)
return nbytes_rx;
int16_t myData0_i[SAMPLES], myData0_q[SAMPLES];
int16_t myData2_i[SAMPLES], myData2_q[SAMPLES];
// Read data from all channels
read_buffer_data(rxa_chan_real, rxbuf, myData0_i, SAMPLES * sizeof(int16_t));
read_buffer_data(rxa_chan_imag, rxbuf, myData0_q, SAMPLES * sizeof(int16_t));
read_buffer_data(rxb_chan_real, rxbuf, myData2_i, SAMPLES * sizeof(int16_t));
read_buffer_data(rxb_chan_imag, rxbuf, myData2_q, SAMPLES * sizeof(int16_t));
ad9361_sleep_ms();
*estimate =
calculate_phase(myData0_i, myData0_q, myData2_i, myData2_q, SAMPLES) *
180 / M_PI;
return 0;
}
int calibrate_chain(struct iio_device *dev, double scale, double *phase)
{
double est = 0, tmp;
int k = 0, ret = -2, g;
if (streaming_interfaces(true) < 0)
return -ENODEV;
*phase = 0;
for (; k < CALIBRATE_TRIES; k++) {
*phase = STEP_SIZE * est + (*phase);
ret = trx_phase_rotation(dev, *phase);
CHECK(ret);
for (g=0; g<STALE_BUFFERS; g++)
ret = estimate_phase_diff(&est);
CHECK(ret);
#if (DEBUG > 1)
printf("Phase error: %f | Phase Setting: %f\n", est, *phase);
#endif
if (fabs(est) < TOLERANCE) {
ret = 0;
break;
}
est *= scale;
}
streaming_interfaces(false);
#if (DEBUG > 0)
printf("Remaining Phase error: %f\n", est);
printf("Rotation: %f\n", *phase);
#endif
return 0;
}
int quad_tracking(bool enable)
{
struct iio_channel *chn =
iio_device_find_channel(dev_phy, "voltage0", enable);
if (chn == NULL)
return -ENODEV;
iio_channel_attr_write(chn, "quadrature_tracking_en", "0");
chn = iio_device_find_channel(dev_phy_slave, "voltage0", enable);
if (chn == NULL)
return -ENODEV;
iio_channel_attr_write(chn, "quadrature_tracking_en", "0");
return 0;
}
int configure_transceiver(struct iio_device *dev, long long bw_hz,
long long fs_hz, long long lo_hz)
{
int ret = 0;
// Set up channels
struct iio_channel *chnRX1;
struct iio_channel *chnTX1;
struct iio_channel *chnRX2;
struct iio_channel *chnTX2;
// Configure LO channel
chnRX1 = iio_device_find_channel(dev, "altvoltage0", true);
chnTX1 = iio_device_find_channel(dev, "altvoltage1", true);
if (!(chnRX1 && chnTX1))
return -ENODEV;
ret = iio_channel_attr_write_longlong(chnRX1, "frequency", lo_hz);
CHECK(ret);
ret = iio_channel_attr_write_longlong(chnTX1, "frequency", lo_hz);
CHECK(ret);
// Set up gains to know good values
chnRX1 = iio_device_find_channel(dev, "voltage0", false);
chnTX1 = iio_device_find_channel(dev, "voltage0", true);
chnRX2 = iio_device_find_channel(dev, "voltage1", false);
chnTX2 = iio_device_find_channel(dev, "voltage1", true);
if (!(chnRX1 && chnTX1 && chnRX2 && chnTX2))
return -ENODEV;
ret = iio_channel_attr_write(chnRX1, "gain_control_mode", "manual");
CHECK(ret);
ret = iio_channel_attr_write(chnRX2, "gain_control_mode", "manual");
CHECK(ret);
ret = iio_channel_attr_write_double(chnRX1, "hardwaregain", 32.0);
CHECK(ret);
ret = iio_channel_attr_write_double(chnRX2, "hardwaregain", 32.0);
CHECK(ret);
ret = iio_channel_attr_write_double(chnTX1, "hardwaregain", -20);
CHECK(ret);
ret = iio_channel_attr_write_double(chnTX2, "hardwaregain", -20);
CHECK(ret);
return 0;
}
int configure_dds(double fs, double scale)
{
long long freq = (long long)fs * 0.01;
int i, j, ret = 0;
for (i = 0; i < 2; i++) {
for (j = 0; j < 8; j++) {
ret |= iio_channel_attr_write_longlong(dds_out[i][j], "frequency", freq);
ret |= iio_channel_attr_write_double(dds_out[i][j], "scale", scale);
}
dds_tx_phase_rotation(i ? dev_tx_slave : dev_tx, 0.0);
trx_phase_rotation(i ? dev_tx_slave : dev_tx, 0.0);
}
return ret;
}
int get_dds_channels()
{
struct iio_device *dev;
int i, j;
char name[16];
for (i = 0; i < 2; i++) {
dev = i ? dev_tx : dev_tx_slave;
for (j = 0; j < 8; j++) {
snprintf(name, sizeof(name), "altvoltage%d", j);
dds_out[i][j] = iio_device_find_channel(dev, name, true);
if (!dds_out[i][j])
return -errno;
}
}
return 0;
}
int setup_iio_devices(struct iio_context *ctx)
{
dev_rx = iio_context_find_device(ctx, DEV_RX_NAME);
dev_rx_slave = iio_context_find_device(ctx, DEV_RX_SLAVE_NAME);
dev_phy = iio_context_find_device(ctx, DEV_PHY_NAME);
dev_phy_slave = iio_context_find_device(ctx, DEV_PHY_SLAVE_NAME);
dev_tx = iio_context_find_device(ctx, DEV_TX_NAME);
dev_tx_slave = iio_context_find_device(ctx, DEV_TX_SLAVE_NAME);
return (dev_rx && dev_rx_slave && dev_phy && dev_phy_slave && dev_tx &&
dev_tx_slave);
}
/* Synchronize all transmit and receive channels for FMComms5*/
int phase_sync(struct iio_context *ctx, long long sample_rate, long long lo)
{
// Set analog bandwidth same as sample rate
long long bw = sample_rate;
// Set up devices
if (!setup_iio_devices(ctx))
return -ENODEV;
// Set up DDSs
int ret = get_dds_channels();
CHECK(ret);
// Sync chips together
ret = ad9361_multichip_sync(dev_phy, &dev_phy_slave, 1,
FIXUP_INTERFACE_TIMING | CHECK_SAMPLE_RATES);
CHECK(ret);
// Set up DDS at given frequency
ret = configure_dds(sample_rate, DDS_SCALE);
CHECK(ret);
// Set LO, bandwidth, and gain of transceivers
ret = configure_transceiver(dev_phy, bw, sample_rate, lo);
CHECK(ret);
ret = configure_transceiver(dev_phy_slave, bw, sample_rate, lo);
CHECK(ret);
// Turn off quad tracking
quad_tracking(false);
// Reset all phase shifts to zero
ret = trx_phase_rotation(dev_rx, 0.0);
CHECK(ret);
ret = trx_phase_rotation(dev_rx_slave, 0.0);
CHECK(ret);
ret = trx_phase_rotation(dev_tx, 0.0);
CHECK(ret);
ret = trx_phase_rotation(dev_tx_slave, 0.0);
CHECK(ret);
// Align receiver on Chip A (TX from chip A) with BIST loopback
configure_ports(1); // Chip A -> Chip A | FPGA Loopback on B
double phase_est_rx_slave = 0, phase_est = 0;
ret = calibrate_chain(dev_rx_slave, -1, &phase_est_rx_slave);
CHECK(ret);
// Align receiver on Chip B (TX from chip A) with BIST loopback
ret = trx_phase_rotation(dev_rx_slave, 0.0); // Reset reference channel
CHECK(ret);
configure_ports(3); // Chip A -> Chip B | FPGA Loopback on A
ret = calibrate_chain(dev_rx, 1, &phase_est);
CHECK(ret);
// At this point both receivers are aligned with Chip A TX
// Align Chip B TX with a receiver
ret = trx_phase_rotation(dev_rx_slave, 0);
CHECK(ret);
configure_ports(4); // Chip B -> Chip B | FPGA Loopback on A
ret = calibrate_chain(dev_tx_slave, -1, &phase_est);
CHECK(ret);
// Set rotation of chip B receiver to originally measured
ret = trx_phase_rotation(dev_rx_slave, phase_est_rx_slave);
CHECK(ret);
return 0;
}
/* Synchronize all transmit and receive channels for FMComms5*/
int ad9361_fmcomms5_phase_sync(struct iio_context *ctx, long long lo)
{
struct iio_channel *chan;
struct iio_device *dev;
long long sample_rate;
int ret;
// Get current sample rate
dev = iio_context_find_device(ctx, DEV_PHY_NAME);
if (dev == NULL)
return -ENODEV;
chan = iio_device_find_channel(dev, "voltage0", true);
if (chan == NULL)
return -ENODEV;
ret = iio_channel_attr_read_longlong(chan, "sampling_frequency", &sample_rate);
CHECK(ret);
ret = phase_sync(ctx, sample_rate, lo);
// Reset ports out to RF
configure_ports(0);
return ret;
}