Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Exception in thread Thread-1: ValueError: signal number 32 out of range #30

Open
moldach opened this issue Mar 22, 2021 · 2 comments
Open

Comments

@moldach
Copy link

moldach commented Mar 22, 2021

I had trouble installing on a HPC with access to GPUs (#29 ) so I've now tried to install on my local laptop (without GPU support). Using python 3.8.0 I still get the same errors trying to install requirements.txt and there are a few dependencies that were not mentioned in this file, namely: Cython, torchvision and opencv-python:

modified requirements.txt:

#torch==1.3.0.post2
torch
pytorch-ssim==0.1
numpy
scikit-image
tqdm
#pytorch-ssim==0.1
#numpy==1.16.4
#scikit-image==0.15.0
#tqdm==4.37.0
Cython
torchvision
opencv-python

After successfully installing pyflow via:

cd pyflow/
python setup.py build_ext -i  # build pyflow
python demo.py                # to make sure pyflow works
cp pyflow*.so ..

I try to run the example iSeeBetterTest.py but I get the following error:

(venv) mtg@mtg-ThinkPad-P53:~/iSeeBetter$ python3 iSeeBetterTest.py 
Namespace(chop_forward=False, data_dir='./Vid4', debug=False, file_list='foliage_test.txt', future_frame=True, gpu_mode=False, gpus=0, model='weights/netG_epoch_4_1.pth', model_type='RBPN', nFrames=7, other_dataset=True, output='Results/', residual=False, seed=123, testBatchSize=1, threads=1, upscale_factor=4, upscale_only=False)
==> Loading datasets
==> Building model  RBPN
[    INFO] ------------- iSeeBetter Network Architecture -------------
[    INFO] ----------------- Generator Architecture ------------------
[    INFO] Net(
  (feat0): ConvBlock(
    (conv): Conv2d(3, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (act): PReLU(num_parameters=1)
  )
  (feat1): ConvBlock(
    (conv): Conv2d(8, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (act): PReLU(num_parameters=1)
  )
  (DBPN): Net(
    (feat1): ConvBlock(
      (conv): Conv2d(256, 64, kernel_size=(1, 1), stride=(1, 1))
      (act): PReLU(num_parameters=1)
    )
    (up1): UpBlock(
      (up_conv1): DeconvBlock(
        (deconv): ConvTranspose2d(64, 64, kernel_size=(8, 8), stride=(4, 4), padding=(2, 2))
        (act): PReLU(num_parameters=1)
      )
      (up_conv2): ConvBlock(
        (conv): Conv2d(64, 64, kernel_size=(8, 8), stride=(4, 4), padding=(2, 2))
        (act): PReLU(num_parameters=1)
      )
      (up_conv3): DeconvBlock(
        (deconv): ConvTranspose2d(64, 64, kernel_size=(8, 8), stride=(4, 4), padding=(2, 2))
        (act): PReLU(num_parameters=1)
      )
    )
    (down1): DownBlock(
      (down_conv1): ConvBlock(
        (conv): Conv2d(64, 64, kernel_size=(8, 8), stride=(4, 4), padding=(2, 2))
        (act): PReLU(num_parameters=1)
      )
      (down_conv2): DeconvBlock(
        (deconv): ConvTranspose2d(64, 64, kernel_size=(8, 8), stride=(4, 4), padding=(2, 2))
        (act): PReLU(num_parameters=1)
      )
      (down_conv3): ConvBlock(
        (conv): Conv2d(64, 64, kernel_size=(8, 8), stride=(4, 4), padding=(2, 2))
        (act): PReLU(num_parameters=1)
      )
    )
    (up2): UpBlock(
      (up_conv1): DeconvBlock(
        (deconv): ConvTranspose2d(64, 64, kernel_size=(8, 8), stride=(4, 4), padding=(2, 2))
        (act): PReLU(num_parameters=1)
      )
      (up_conv2): ConvBlock(
        (conv): Conv2d(64, 64, kernel_size=(8, 8), stride=(4, 4), padding=(2, 2))
        (act): PReLU(num_parameters=1)
      )
      (up_conv3): DeconvBlock(
        (deconv): ConvTranspose2d(64, 64, kernel_size=(8, 8), stride=(4, 4), padding=(2, 2))
        (act): PReLU(num_parameters=1)
      )
    )
    (down2): DownBlock(
      (down_conv1): ConvBlock(
        (conv): Conv2d(64, 64, kernel_size=(8, 8), stride=(4, 4), padding=(2, 2))
        (act): PReLU(num_parameters=1)
      )
      (down_conv2): DeconvBlock(
        (deconv): ConvTranspose2d(64, 64, kernel_size=(8, 8), stride=(4, 4), padding=(2, 2))
        (act): PReLU(num_parameters=1)
      )
      (down_conv3): ConvBlock(
        (conv): Conv2d(64, 64, kernel_size=(8, 8), stride=(4, 4), padding=(2, 2))
        (act): PReLU(num_parameters=1)
      )
    )
    (up3): UpBlock(
      (up_conv1): DeconvBlock(
        (deconv): ConvTranspose2d(64, 64, kernel_size=(8, 8), stride=(4, 4), padding=(2, 2))
        (act): PReLU(num_parameters=1)
      )
      (up_conv2): ConvBlock(
        (conv): Conv2d(64, 64, kernel_size=(8, 8), stride=(4, 4), padding=(2, 2))
        (act): PReLU(num_parameters=1)
      )
      (up_conv3): DeconvBlock(
        (deconv): ConvTranspose2d(64, 64, kernel_size=(8, 8), stride=(4, 4), padding=(2, 2))
        (act): PReLU(num_parameters=1)
      )
    )
    (output): ConvBlock(
      (conv): Conv2d(192, 64, kernel_size=(1, 1), stride=(1, 1))
    )
  )
  (res_feat1): Sequential(
    (0): ResnetBlock(
      (conv1): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
      (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
      (act): PReLU(num_parameters=1)
    )
    (1): ResnetBlock(
      (conv1): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
      (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
      (act): PReLU(num_parameters=1)
    )
    (2): ResnetBlock(
      (conv1): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
      (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
      (act): PReLU(num_parameters=1)
    )
    (3): ResnetBlock(
      (conv1): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
      (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
      (act): PReLU(num_parameters=1)
    )
    (4): ResnetBlock(
      (conv1): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
      (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
      (act): PReLU(num_parameters=1)
    )
    (5): DeconvBlock(
      (deconv): ConvTranspose2d(256, 64, kernel_size=(8, 8), stride=(4, 4), padding=(2, 2))
      (act): PReLU(num_parameters=1)
    )
  )
  (res_feat2): Sequential(
    (0): ResnetBlock(
      (conv1): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
      (conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
      (act): PReLU(num_parameters=1)
    )
    (1): ResnetBlock(
      (conv1): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
      (conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
      (act): PReLU(num_parameters=1)
    )
    (2): ResnetBlock(
      (conv1): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
      (conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
      (act): PReLU(num_parameters=1)
    )
    (3): ResnetBlock(
      (conv1): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
      (conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
      (act): PReLU(num_parameters=1)
    )
    (4): ResnetBlock(
      (conv1): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
      (conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
      (act): PReLU(num_parameters=1)
    )
    (5): ConvBlock(
      (conv): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
      (act): PReLU(num_parameters=1)
    )
  )
  (res_feat3): Sequential(
    (0): ResnetBlock(
      (conv1): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
      (conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
      (act): PReLU(num_parameters=1)
    )
    (1): ResnetBlock(
      (conv1): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
      (conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
      (act): PReLU(num_parameters=1)
    )
    (2): ResnetBlock(
      (conv1): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
      (conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
      (act): PReLU(num_parameters=1)
    )
    (3): ResnetBlock(
      (conv1): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
      (conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
      (act): PReLU(num_parameters=1)
    )
    (4): ResnetBlock(
      (conv1): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
      (conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
      (act): PReLU(num_parameters=1)
    )
    (5): ConvBlock(
      (conv): Conv2d(64, 256, kernel_size=(8, 8), stride=(4, 4), padding=(2, 2))
      (act): PReLU(num_parameters=1)
    )
  )
  (output): ConvBlock(
    (conv): Conv2d(384, 3, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
  )
)
[    INFO] Total number of parameters: 12771943
Pre-trained SR model loaded from: weights/netG_epoch_4_1.pth
Exception in thread Thread-1:
Traceback (most recent call last):
  File "/home/mtg/.pyenv/versions/3.6.3/lib/python3.6/threading.py", line 916, in _bootstrap_inner
    self.run()
  File "/home/mtg/.pyenv/versions/3.6.3/lib/python3.6/threading.py", line 864, in run
    self._target(*self._args, **self._kwargs)
  File "/home/mtg/.pyenv/versions/3.6.3/lib/python3.6/multiprocessing/resource_sharer.py", line 139, in _serve
    signal.pthread_sigmask(signal.SIG_BLOCK, range(1, signal.NSIG))
  File "/home/mtg/.pyenv/versions/3.6.3/lib/python3.6/signal.py", line 60, in pthread_sigmask
    sigs_set = _signal.pthread_sigmask(how, mask)
ValueError: signal number 32 out of range

Any idea what the issue is here?

@diegocaumont
Copy link

Facing the same issue...

@TheOmega-hash
Copy link

same erro here!

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

3 participants