forked from kamyu104/LeetCode-Solutions
-
Notifications
You must be signed in to change notification settings - Fork 14
/
cherry-pickup.py
34 lines (32 loc) · 1.34 KB
/
cherry-pickup.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
# Time: O(n^3)
# Space: O(n^2)
class Solution(object):
def cherryPickup(self, grid):
"""
:type grid: List[List[int]]
:rtype: int
"""
# dp holds the max # of cherries two k-length paths can pickup.
# The two k-length paths arrive at (i, k - i) and (j, k - j),
# respectively.
n = len(grid)
dp = [[-1 for _ in xrange(n)] for _ in xrange(n)]
dp[0][0] = grid[0][0]
max_len = 2 * (n-1)
directions = [(0, 0), (-1, 0), (0, -1), (-1, -1)]
for k in xrange(1, max_len+1):
for i in reversed(xrange(max(0, k-n+1), min(k+1, n))): # 0 <= i < n, 0 <= k-i < n
for j in reversed(xrange(i, min(k+1, n))): # i <= j < n, 0 <= k-j < n
if grid[i][k-i] == -1 or grid[j][k-j] == -1:
dp[i][j] = -1
continue
cnt = grid[i][k-i]
if i != j:
cnt += grid[j][k-j]
max_cnt = -1
for direction in directions:
ii, jj = i+direction[0], j+direction[1]
if ii >= 0 and jj >= 0 and dp[ii][jj] >= 0:
max_cnt = max(max_cnt, dp[ii][jj]+cnt)
dp[i][j] = max_cnt
return max(dp[n-1][n-1], 0)