forked from vivekraghuram3/21-270-Summer-Research
-
Notifications
You must be signed in to change notification settings - Fork 0
/
mathfi n-period ln(x).py
162 lines (130 loc) · 4.16 KB
/
mathfi n-period ln(x).py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
import numpy
import matplotlib.pyplot as plt
import math
import sympy
import fractions
from sympy import S
import copy
import scipy.optimize
import scipy.special
#p = 0.02 # actual probability Heads
def nCr(n, r):
return math.factorial(n)/(math.factorial(n-r)*math.factorial(r))
S = 1 # Initial cost of Stock
u = 1000 # Up Factor
d = .01
X = 100 # initial capital
r = 1/4
def findPoly(N,p): # Assuming U(x) = ln(x), return a polynomial function for E(U(x))
q = 1-p # actual probability Tails
y = sympy.symbols("y", real=True) # Number of shares of each stock
poly = 0
for i in range(0, N+1):
prob = (p**i) * (q**(N-i))
binom = nCr(N, i)
numerator = (-1*S*((1+r)**N)) + (u**i)*(d**(N-i))*S
denominator = ((X-S*y)*((1+r)**N) + ((u**i)*(d**(N-i))*S*y) )
poly += prob * binom * (numerator/denominator)
#poly += -1* prob * binom * math.log(denominator)
#print("poly", poly)
return poly
#return all y roots
def getRoots(N,p):
q = 1-p # actual probability Tails
util = 0
#yValues = testSymPy(N)
y = sympy.symbols("y", real = True)
expValPoly = findPoly(N,p)
roots = (sympy.solveset(sympy.Eq(expValPoly, 0), y))
roots = list(roots)
boots = []
#print("before real filter", roots)
for root in roots:
if (sympy.re(root) == root):
boots.append(sympy.re(root))
return boots
# def getRoots(N,p):
# q = 1-p
# max_y = scipy.optimize.root_scalar(findPoly, args = (N,p), bracket=[-1000,1000], method="bisect")
# #print(-1*max_y.fun)
# print(max_y.root)
# return max_y.root
def getValidRoots(N,p): # return all valid roots
q = 1-p # actual probability Tails
util = 0
allRoots = getRoots(N,p)
rootsCopy = copy.deepcopy(allRoots)
badRoots = set()
for root in allRoots:
for i in range(0, N+1):
#print(root, i, (((X-S*root)*((1+r)**N)+((u**i)*(d**(N-i))*S*root))) )
if almostEqual(0,((X-S*root)*((1+r)**N)+((u**i)*(d**(N-i))*S*root))) == True:
continue
elif (((X-S*root)*((1+r)**N)+((u**i)*(d**(N-i))*S*root))) <= 0:
badRoots.add(root)
#print("bad",badRoots)
allRoots = set(allRoots)
goodRoots = allRoots.difference(badRoots)
#print("goodRoots",sorted(list(goodRoots)))
posRoots = []
if list(goodRoots) == []:
for root in rootsCopy:
if root > 0:
posRoots.append(root)
return [posRoots[0]]
return sorted(list(goodRoots))
def almostEqual(x, y):
return abs(x - y) < 10**-8
def getExpectedUtil(N,p): #return E(U(x)) for each good root
q = 1-p # actual probability Tails
util = 0
yValues = getValidRoots(N,p)
terminalCaps = []
for val in yValues:
for i in range(0, N+1):
#print(val)
if (X-S*N*val)*(1+r) + S*d*N*val + S*(u-d)*val*i <= 0:
util += 0
else:
util += (p**i)*(q**(N-i)) * nCr(N, i) * math.log(((X-S*val)*((1+r)**N)+((u**i)*(d**(N-i))*S*val)))
terminalCaps.append(util)
util = 0
print(terminalCaps)
return sorted(terminalCaps)
def getValidUtilNY(N,p): # get Ny yValues
q = 1-p # actual probability Tails
validRoots = getValidRoots(N,p)
for i in range(len(validRoots)):
validRoots[i] *= N
return validRoots
yCoord = []
#print("here",getRoots(1,0.26666667))
# print("here",getValidRoots(1,0.52)[0])
# print("test", getValidRoots(15))
# print("exp",getExpectedUtil(11))
#print(getValidUtilNY(15))
def graph(m1, m2):
div = 10**max((len(str(m1)), len(str(m2))))
#print(div)
for j in range(1, 10):
print("p=",j/10)
for i in range(1,6):
print("N="+str(i))
global yCoord
yCoord.append(getValidRoots(i, j/10))
#yCoord.append(getExpectedUtil(i, j/8000)[0])
print("ycoord", yCoord)
diffSet = []
for idx in range(len(yCoord)-1):
diffSet.append(yCoord[idx+1][0]-yCoord[idx][0])
print("diffSet", diffSet)
plt.plot([i for i in range(1,len(yCoord)+1)], yCoord, label = str(j/10))
yCoord = []
#plt.plot(i, getExpectedUtil(i), "o" , label = str(i))
plt.xlabel('N (period-number)')
plt.ylabel('Optimal y-value')
plt.grid(True)
plt.title("u="+str(u)+" "+"d="+str(d)+" "+"r="+str(r)+" "+"X="+str(X)+" "+"S="+str(S))
plt.legend(bbox_to_anchor = (1.0, 1.15), loc='upper left', borderaxespad=0.)
plt.show()
graph(1,9)