forked from mit-han-lab/proxylessnas
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_manager.py
606 lines (521 loc) · 23.3 KB
/
run_manager.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
# ProxylessNAS: Direct Neural Architecture Search on Target Task and Hardware
# Han Cai, Ligeng Zhu, Song Han
# International Conference on Learning Representations (ICLR), 2019.
import time
import json
from datetime import timedelta
import numpy as np
import copy
import torch.nn.parallel
import torch.backends.cudnn as cudnn
import torch.optim
from utils import *
from models.normal_nets.proxyless_nets import ProxylessNASNets
from modules.mix_op import MixedEdge
class RunConfig:
def __init__(self, n_epochs, init_lr, lr_schedule_type, lr_schedule_param,
dataset, train_batch_size, test_batch_size, valid_size,
opt_type, opt_param, weight_decay, label_smoothing, no_decay_keys,
model_init, init_div_groups, validation_frequency, print_frequency):
self.n_epochs = n_epochs
self.init_lr = init_lr
self.lr_schedule_type = lr_schedule_type
self.lr_schedule_param = lr_schedule_param
self.dataset = dataset
self.train_batch_size = train_batch_size
self.test_batch_size = test_batch_size
self.valid_size = valid_size
self.opt_type = opt_type
self.opt_param = opt_param
self.weight_decay = weight_decay
self.label_smoothing = label_smoothing
self.no_decay_keys = no_decay_keys
self.model_init = model_init
self.init_div_groups = init_div_groups
self.validation_frequency = validation_frequency
self.print_frequency = print_frequency
self._data_provider = None
self._train_iter, self._valid_iter, self._test_iter = None, None, None
@property
def config(self):
config = {}
for key in self.__dict__:
if not key.startswith('_'):
config[key] = self.__dict__[key]
return config
def copy(self):
return RunConfig(**self.config)
""" learning rate """
def _calc_learning_rate(self, epoch, batch=0, nBatch=None):
if self.lr_schedule_type == 'cosine':
T_total = self.n_epochs * nBatch
T_cur = epoch * nBatch + batch
lr = 0.5 * self.init_lr * (1 + math.cos(math.pi * T_cur / T_total))
else:
raise ValueError('do not support: %s' % self.lr_schedule_type)
return lr
def adjust_learning_rate(self, optimizer, epoch, batch=0, nBatch=None):
""" adjust learning of a given optimizer and return the new learning rate """
new_lr = self._calc_learning_rate(epoch, batch, nBatch)
for param_group in optimizer.param_groups:
param_group['lr'] = new_lr
return new_lr
""" data provider """
@property
def data_config(self):
raise NotImplementedError
@property
def data_provider(self):
if self._data_provider is None:
if self.dataset == 'imagenet':
from data_providers.imagenet import ImagenetDataProvider
self._data_provider = ImagenetDataProvider(**self.data_config)
else:
raise ValueError('do not support: %s' % self.dataset)
return self._data_provider
@data_provider.setter
def data_provider(self, val):
self._data_provider = val
@property
def train_loader(self):
return self.data_provider.train
@property
def valid_loader(self):
return self.data_provider.valid
@property
def test_loader(self):
return self.data_provider.test
@property
def train_next_batch(self):
if self._train_iter is None:
self._train_iter = iter(self.train_loader)
try:
data = next(self._train_iter)
except StopIteration:
self._train_iter = iter(self.train_loader)
data = next(self._train_iter)
return data
@property
def valid_next_batch(self):
if self._valid_iter is None:
self._valid_iter = iter(self.valid_loader)
try:
data = next(self._valid_iter)
except StopIteration:
self._valid_iter = iter(self.valid_loader)
data = next(self._valid_iter)
return data
@property
def test_next_batch(self):
if self._test_iter is None:
self._test_iter = iter(self.test_loader)
try:
data = next(self._test_iter)
except StopIteration:
self._test_iter = iter(self.test_loader)
data = next(self._test_iter)
return data
""" optimizer """
def build_optimizer(self, net_params):
if self.opt_type == 'sgd':
opt_param = {} if self.opt_param is None else self.opt_param
momentum, nesterov = opt_param.get('momentum', 0.9), opt_param.get('nesterov', True)
if self.no_decay_keys:
optimizer = torch.optim.SGD([
{'params': net_params[0], 'weight_decay': self.weight_decay},
{'params': net_params[1], 'weight_decay': 0},
], lr=self.init_lr, momentum=momentum, nesterov=nesterov)
else:
optimizer = torch.optim.SGD(net_params, self.init_lr, momentum=momentum, nesterov=nesterov,
weight_decay=self.weight_decay)
else:
raise NotImplementedError
return optimizer
class RunManager:
def __init__(self, path, net, run_config: RunConfig, out_log=True, measure_latency=None):
self.path = path
self.net = net
self.run_config = run_config
self.out_log = out_log
self._logs_path, self._save_path = None, None
self.best_acc = 0
self.start_epoch = 0
# initialize model (default)
self.net.init_model(run_config.model_init, run_config.init_div_groups)
# a copy of net on cpu for latency estimation & mobile latency model
self.net_on_cpu_for_latency = copy.deepcopy(self.net).cpu()
self.latency_estimator = LatencyEstimator()
# move network to GPU if available
if torch.cuda.is_available():
self.device = torch.device('cuda:0')
self.net = torch.nn.DataParallel(self.net)
self.net.to(self.device)
cudnn.benchmark = True
else:
raise ValueError
# self.device = torch.device('cpu')
# net info
self.print_net_info(measure_latency)
self.criterion = nn.CrossEntropyLoss()
if self.run_config.no_decay_keys:
keys = self.run_config.no_decay_keys.split('#')
self.optimizer = self.run_config.build_optimizer([
self.net.module.get_parameters(keys, mode='exclude'), # parameters with weight decay
self.net.module.get_parameters(keys, mode='include'), # parameters without weight decay
])
else:
self.optimizer = self.run_config.build_optimizer(self.net.module.weight_parameters())
""" save path and log path """
@property
def save_path(self):
if self._save_path is None:
save_path = os.path.join(self.path, 'checkpoint')
os.makedirs(save_path, exist_ok=True)
self._save_path = save_path
return self._save_path
@property
def logs_path(self):
if self._logs_path is None:
logs_path = os.path.join(self.path, 'logs')
os.makedirs(logs_path, exist_ok=True)
self._logs_path = logs_path
return self._logs_path
""" net info """
# noinspection PyUnresolvedReferences
def net_flops(self):
data_shape = [1] + list(self.run_config.data_provider.data_shape)
if isinstance(self.net, nn.DataParallel):
net = self.net.module
else:
net = self.net
input_var = torch.zeros(data_shape, device=self.device)
with torch.no_grad():
flop, _ = net.get_flops(input_var)
return flop
# noinspection PyUnresolvedReferences
def net_latency(self, l_type='gpu4', fast=True, given_net=None):
if 'gpu' in l_type:
l_type, batch_size = l_type[:3], int(l_type[3:])
else:
batch_size = 1
data_shape = [batch_size] + list(self.run_config.data_provider.data_shape)
if given_net is not None:
net = given_net
else:
net = self.net.module
if l_type == 'mobile':
predicted_latency = 0
try:
assert isinstance(net, ProxylessNASNets)
# first conv
predicted_latency += self.latency_estimator.predict(
'Conv', [224, 224, 3], [112, 112, net.first_conv.out_channels]
)
# feature mix layer
predicted_latency += self.latency_estimator.predict(
'Conv_1', [7, 7, net.feature_mix_layer.in_channels], [7, 7, net.feature_mix_layer.out_channels]
)
# classifier
predicted_latency += self.latency_estimator.predict(
'Logits', [7, 7, net.classifier.in_features], [net.classifier.out_features] # 1000
)
# blocks
fsize = 112
for block in net.blocks:
mb_conv = block.mobile_inverted_conv
shortcut = block.shortcut
if isinstance(mb_conv, MixedEdge):
mb_conv = mb_conv.active_op
if isinstance(shortcut, MixedEdge):
shortcut = shortcut.active_op
if mb_conv.is_zero_layer():
continue
if shortcut is None or shortcut.is_zero_layer():
idskip = 0
else:
idskip = 1
out_fz = fsize // mb_conv.stride
block_latency = self.latency_estimator.predict(
'expanded_conv', [fsize, fsize, mb_conv.in_channels], [out_fz, out_fz, mb_conv.out_channels],
expand=mb_conv.expand_ratio, kernel=mb_conv.kernel_size, stride=mb_conv.stride, idskip=idskip
)
predicted_latency += block_latency
fsize = out_fz
except Exception:
predicted_latency = 200
print('fail to predict the mobile latency')
return predicted_latency, None
elif l_type == 'cpu':
if fast:
n_warmup = 1
n_sample = 2
else:
n_warmup = 10
n_sample = 100
try:
self.net_on_cpu_for_latency.set_active_via_net(net)
except AttributeError:
print(type(self.net_on_cpu_for_latency), ' do not `support set_active_via_net()`')
net = self.net_on_cpu_for_latency
images = torch.zeros(data_shape, device=torch.device('cpu'))
elif l_type == 'gpu':
if fast:
n_warmup = 5
n_sample = 10
else:
n_warmup = 50
n_sample = 100
images = torch.zeros(data_shape, device=self.device)
else:
raise NotImplementedError
measured_latency = {'warmup': [], 'sample': []}
net.eval()
with torch.no_grad():
for i in range(n_warmup + n_sample):
start_time = time.time()
net(images)
used_time = (time.time() - start_time) * 1e3 # ms
if i >= n_warmup:
measured_latency['sample'].append(used_time)
else:
measured_latency['warmup'].append(used_time)
net.train()
return sum(measured_latency['sample']) / n_sample, measured_latency
def print_net_info(self, measure_latency=None):
# network architecture
if self.out_log:
print(self.net)
# parameters
if isinstance(self.net, nn.DataParallel):
total_params = count_parameters(self.net.module)
else:
total_params = count_parameters(self.net)
if self.out_log:
print('Total training params: %.2fM' % (total_params / 1e6))
net_info = {
'param': '%.2fM' % (total_params / 1e6),
}
# flops
flops = self.net_flops()
if self.out_log:
print('Total FLOPs: %.1fM' % (flops / 1e6))
net_info['flops'] = '%.1fM' % (flops / 1e6)
# latency
latency_types = [] if measure_latency is None else measure_latency.split('#')
for l_type in latency_types:
latency, measured_latency = self.net_latency(l_type, fast=False, given_net=None)
if self.out_log:
print('Estimated %s latency: %.3fms' % (l_type, latency))
net_info['%s latency' % l_type] = {
'val': latency,
'hist': measured_latency
}
with open('%s/net_info.txt' % self.logs_path, 'w') as fout:
fout.write(json.dumps(net_info, indent=4) + '\n')
""" save and load models """
def save_model(self, checkpoint=None, is_best=False, model_name=None):
if checkpoint is None:
checkpoint = {'state_dict': self.net.module.state_dict()}
if model_name is None:
model_name = 'checkpoint.pth.tar'
checkpoint['dataset'] = self.run_config.dataset # add `dataset` info to the checkpoint
latest_fname = os.path.join(self.save_path, 'latest.txt')
model_path = os.path.join(self.save_path, model_name)
with open(latest_fname, 'w') as fout:
fout.write(model_path + '\n')
torch.save(checkpoint, model_path)
if is_best:
best_path = os.path.join(self.save_path, 'model_best.pth.tar')
torch.save({'state_dict': checkpoint['state_dict']}, best_path)
def load_model(self, model_fname=None):
latest_fname = os.path.join(self.save_path, 'latest.txt')
if model_fname is None and os.path.exists(latest_fname):
with open(latest_fname, 'r') as fin:
model_fname = fin.readline()
if model_fname[-1] == '\n':
model_fname = model_fname[:-1]
# noinspection PyBroadException
try:
if model_fname is None or not os.path.exists(model_fname):
model_fname = '%s/checkpoint.pth.tar' % self.save_path
with open(latest_fname, 'w') as fout:
fout.write(model_fname + '\n')
if self.out_log:
print("=> loading checkpoint '{}'".format(model_fname))
if torch.cuda.is_available():
checkpoint = torch.load(model_fname)
else:
checkpoint = torch.load(model_fname, map_location='cpu')
self.net.module.load_state_dict(checkpoint['state_dict'])
# set new manual seed
new_manual_seed = int(time.time())
torch.manual_seed(new_manual_seed)
torch.cuda.manual_seed_all(new_manual_seed)
np.random.seed(new_manual_seed)
if 'epoch' in checkpoint:
self.start_epoch = checkpoint['epoch'] + 1
if 'best_acc' in checkpoint:
self.best_acc = checkpoint['best_acc']
if 'optimizer' in checkpoint:
self.optimizer.load_state_dict(checkpoint['optimizer'])
if self.out_log:
print("=> loaded checkpoint '{}'".format(model_fname))
except Exception:
if self.out_log:
print('fail to load checkpoint from %s' % self.save_path)
def save_config(self, print_info=True):
""" dump run_config and net_config to the model_folder """
os.makedirs(self.path, exist_ok=True)
net_save_path = os.path.join(self.path, 'net.config')
json.dump(self.net.module.config, open(net_save_path, 'w'), indent=4)
if print_info:
print('Network configs dump to %s' % net_save_path)
run_save_path = os.path.join(self.path, 'run.config')
json.dump(self.run_config.config, open(run_save_path, 'w'), indent=4)
if print_info:
print('Run configs dump to %s' % run_save_path)
""" train and test """
def write_log(self, log_str, prefix, should_print=True):
""" prefix: valid, train, test """
if prefix in ['valid', 'test']:
with open(os.path.join(self.logs_path, 'valid_console.txt'), 'a') as fout:
fout.write(log_str + '\n')
fout.flush()
if prefix in ['valid', 'test', 'train']:
with open(os.path.join(self.logs_path, 'train_console.txt'), 'a') as fout:
if prefix in ['valid', 'test']:
fout.write('=' * 10)
fout.write(log_str + '\n')
fout.flush()
if should_print:
print(log_str)
def validate(self, is_test=True, net=None, use_train_mode=False, return_top5=False):
if is_test:
data_loader = self.run_config.test_loader
else:
data_loader = self.run_config.valid_loader
if net is None:
net = self.net
if use_train_mode:
net.train()
else:
net.eval()
batch_time = AverageMeter()
losses = AverageMeter()
top1 = AverageMeter()
top5 = AverageMeter()
end = time.time()
# noinspection PyUnresolvedReferences
with torch.no_grad():
for i, (images, labels) in enumerate(data_loader):
images, labels = images.to(self.device), labels.to(self.device)
# compute output
output = net(images)
loss = self.criterion(output, labels)
# measure accuracy and record loss
acc1, acc5 = accuracy(output, labels, topk=(1, 5))
losses.update(loss, images.size(0))
top1.update(acc1[0], images.size(0))
top5.update(acc5[0], images.size(0))
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if i % self.run_config.print_frequency == 0 or i + 1 == len(data_loader):
if is_test:
prefix = 'Test'
else:
prefix = 'Valid'
test_log = prefix + ': [{0}/{1}]\t'\
'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'\
'Loss {loss.val:.4f} ({loss.avg:.4f})\t'\
'Top-1 acc {top1.val:.3f} ({top1.avg:.3f})'.\
format(i, len(data_loader) - 1, batch_time=batch_time, loss=losses, top1=top1)
if return_top5:
test_log += '\tTop-5 acc {top5.val:.3f} ({top5.avg:.3f})'.format(top5=top5)
print(test_log)
if return_top5:
return losses.avg, top1.avg, top5.avg
else:
return losses.avg, top1.avg
def train_one_epoch(self, adjust_lr_func, train_log_func):
batch_time = AverageMeter()
data_time = AverageMeter()
losses = AverageMeter()
top1 = AverageMeter()
top5 = AverageMeter()
# switch to train mode
self.net.train()
end = time.time()
for i, (images, labels) in enumerate(self.run_config.train_loader):
data_time.update(time.time() - end)
new_lr = adjust_lr_func(i)
images, labels = images.to(self.device), labels.to(self.device)
# compute output
output = self.net(images)
if self.run_config.label_smoothing > 0:
loss = cross_entropy_with_label_smoothing(output, labels, self.run_config.label_smoothing)
else:
loss = self.criterion(output, labels)
# measure accuracy and record loss
acc1, acc5 = accuracy(output, labels, topk=(1, 5))
losses.update(loss, images.size(0))
top1.update(acc1[0], images.size(0))
top5.update(acc5[0], images.size(0))
# compute gradient and do SGD step
self.net.zero_grad() # or self.optimizer.zero_grad()
loss.backward()
self.optimizer.step()
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if i % self.run_config.print_frequency == 0 or i + 1 == len(self.run_config.train_loader):
batch_log = train_log_func(i, batch_time, data_time, losses, top1, top5, new_lr)
self.write_log(batch_log, 'train')
return top1, top5
def train(self, print_top5=False):
nBatch = len(self.run_config.train_loader)
def train_log_func(epoch_, i, batch_time, data_time, losses, top1, top5, lr):
batch_log = 'Train [{0}][{1}/{2}]\t' \
'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t' \
'Data {data_time.val:.3f} ({data_time.avg:.3f})\t' \
'Loss {losses.val:.4f} ({losses.avg:.4f})\t' \
'Top-1 acc {top1.val:.3f} ({top1.avg:.3f})'. \
format(epoch_ + 1, i, nBatch - 1,
batch_time=batch_time, data_time=data_time, losses=losses, top1=top1)
if print_top5:
batch_log += '\tTop-5 acc {top5.val:.3f} ({top5.avg:.3f})'.format(top5=top5)
batch_log += '\tlr {lr:.5f}'.format(lr=lr)
return batch_log
for epoch in range(self.start_epoch, self.run_config.n_epochs):
print('\n', '-' * 30, 'Train epoch: %d' % (epoch + 1), '-' * 30, '\n')
end = time.time()
train_top1, train_top5 = self.train_one_epoch(
lambda i: self.run_config.adjust_learning_rate(self.optimizer, epoch, i, nBatch),
lambda i, batch_time, data_time, losses, top1, top5, new_lr:
train_log_func(epoch, i, batch_time, data_time, losses, top1, top5, new_lr),
)
time_per_epoch = time.time() - end
seconds_left = int((self.run_config.n_epochs - epoch - 1) * time_per_epoch)
print('Time per epoch: %s, Est. complete in: %s' % (
str(timedelta(seconds=time_per_epoch)),
str(timedelta(seconds=seconds_left))))
if (epoch + 1) % self.run_config.validation_frequency == 0:
val_loss, val_acc, val_acc5 = self.validate(is_test=False, return_top5=True)
is_best = val_acc > self.best_acc
self.best_acc = max(self.best_acc, val_acc)
val_log = 'Valid [{0}/{1}]\tloss {2:.3f}\ttop-1 acc {3:.3f} ({4:.3f})'.\
format(epoch + 1, self.run_config.n_epochs, val_loss, val_acc, self.best_acc)
if print_top5:
val_log += '\ttop-5 acc {0:.3f}\tTrain top-1 {top1.avg:.3f}\ttop-5 {top5.avg:.3f}'.\
format(val_acc5, top1=train_top1, top5=train_top5)
else:
val_log += '\tTrain top-1 {top1.avg:.3f}'.format(top1=train_top1)
self.write_log(val_log, 'valid')
else:
is_best = False
self.save_model({
'epoch': epoch,
'best_acc': self.best_acc,
'optimizer': self.optimizer.state_dict(),
'state_dict': self.net.module.state_dict(),
}, is_best=is_best)