forked from srush/Tensor-Puzzles
-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtest_puzzles.py
620 lines (456 loc) · 15 KB
/
test_puzzles.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
# + [markdown]
# # Tensor Puzzles
# - by [Sasha Rush](http://rush-nlp.com) ( [@srush_nlp](https://twitter.com/srush_nlp) )
#
# [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/srush/Tensor-Puzzles/blob/main/Tensor%20Puzzlers.ipynb)
# When learning a tensor programming language like PyTorch or Numpy it
# is tempting to rely on the standard library (or more honestly
# StackOverflow) to find a magic function for everything. But in
# practice, the tensor language is extremely expressive, and you can
# do most things from first principles and clever use of broadcasting.
# This is a collection of 16 tensor puzzles. Like chess puzzles these are
# not meant to simulate the complexity of a real program, but to practice
# in a simplified environment. Each puzzle asks you to reimplement one
# function in the NumPy standard library without magic.
# ![](https://raw.githubusercontent.com/srush/Tensor-Puzzles/main/chess.jpeg)
# * [Puzzle 1 - ones](#puzzle-1---ones).
# * [Puzzle 2 - sum](#puzzle-2---sum).
# * [Puzzle 3 - outer](#puzzle-3---outer).
# * [Puzzle 4 - diag](#puzzle-4---diag).
# * [Puzzle 5 - eye](#puzzle-5---eye).
# * [Puzzle 6 - triu](#puzzle-6---triu).
# * [Puzzle 7 - cumsum](#puzzle-7---cumsum).
# * [Puzzle 8 - diff](#puzzle-8---diff).
# * [Puzzle 9 - vstack](#puzzle-9---vstack).
# * [Puzzle 10 - roll](#puzzle-10---roll).
# * [Puzzle 11 - flip](#puzzle-11---flip).
# * [Puzzle 12 - compress](#puzzle-12---compress).
# * [Puzzle 13 - pad_to](#puzzle-13---pad_to).
# * [Puzzle 14 - sequence_mask](#puzzle-14---sequence_mask).
# * [Puzzle 15 - bincount](#puzzle-15---bincount).
# * [Puzzle 16 - scatter_add](#puzzle-16---scatter_add).
# ## Rules
# 1. Each can be solved in 1 line (<80 columns) of code.
# 2. You are allowed @, *, ==, <=, `shape`, indexing, and previous puzzle functions.
# 3. Additionally you are allowed these two functions:
# +
import torch
def arange(i: int):
"Think for-loop"
return torch.tensor(range(i))
def where(q, a, b):
"Think if-statement"
return (q * a) + (~q) * b
# + [markdown]
# ### Anti-Rules
# 1. Nothing else. No `view`, `sum`, `take`, `squeeze`, `tensor`.
# 2. No cheating. Stackoverflow is great, but this is about first-principles.
# ## Running puzzles
# Each example, corresponds to a unit test which will randomly
# try to break your code based on the spec. The spec is written in
# standard python with lists.
# To play, fork this repo,
# ```bash
# pip install -r requirements.txt
# pytest test_puzzles.py
# ```
# Alternatively you can play in Colab above or in a notebook on your machine.
# [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/srush/Tensor-Puzzles/blob/main/Tensor%20Puzzlers.ipynb)
# If you are runing in a notebook, just uncomment the test for each example.
# If the test succeeds you will get a puppy.
# [Start at Puzzle 1!](#puzzle-1---ones).
# ### Test Harness
# +
# !pip install -qqq torchtyping hypothesis pytest
# +
import typing
from torchtyping import TensorType as TT
from hypothesis.extra.numpy import arrays
from hypothesis.strategies import integers, tuples, composite, floats
from hypothesis import given
import numpy as np
import random
size = integers(min_value=1, max_value=5)
tensor = torch.tensor
numpy_to_torch_dtype_dict = {
bool: torch.bool,
np.uint8: torch.uint8,
np.int8: torch.int8,
np.int16: torch.int16,
np.int32: torch.int32,
np.int64: torch.int64,
np.float16: torch.float16,
np.float32: torch.float32,
np.float64: torch.float64,
}
torch_to_numpy_dtype_dict = {v: k for k, v in numpy_to_torch_dtype_dict.items()}
@composite
def spec(draw, x):
names = set()
gth = typing.get_type_hints(x)
for k in gth:
if not hasattr(gth[k], "__metadata__"):
continue
dims = gth[k].__metadata__[0]["details"][0].dims
names.update([d.name for d in dims if isinstance(d.name, str)])
names = list(names)
arr = draw(tuples(*[size for _ in range(len(names))]))
sizes = dict(zip(names, arr))
ret = {}
for k in gth:
if not hasattr(gth[k], "__metadata__"):
continue
shape = tuple(
[
sizes[d.name] if isinstance(d.name, str) else d.size
for d in gth[k].__metadata__[0]["details"][0].dims
]
)
ret[k] = draw(
arrays(
shape=shape,
dtype=torch_to_numpy_dtype_dict[
gth[k].__metadata__[0]["details"][1].dtype
]
if len(gth[k].__metadata__[0]["details"]) >= 2
else int,
)
)
ret[k][ret[k] > 1000] = 1000
ret[k][ret[k] < -1000] = -1000
ret[k] = np.nan_to_num(ret[k], nan=0, neginf=0, posinf=0)
ret["return"][:] = 0
return ret, sizes
def make_test(problem, problem_spec, add_sizes=[], constraint=lambda d: d):
@given(spec(problem))
def test_problem(d):
d, sizes = d
d = constraint(d)
out = d["return"].tolist()
del d["return"]
problem_spec(*d.values(), out)
for size in add_sizes:
d[size] = sizes[size]
out2 = problem(*map(tensor, d.values()))
out = tensor(out)
out2 = torch.broadcast_to(out2, out.shape)
assert torch.equal(
out, out2
), "Two tensors are not equal\n Spec: \n\t%s \n\t%s" % (out, out2)
return test_problem
def run_test(fn):
fn()
# Generate a random puppy video if you are correct.
print("Correct!")
from IPython.display import HTML
pups = [
"2m78jPG",
"pn1e9TO",
"MQCIwzT",
"udLK6FS",
"ZNem5o3",
"DS2IZ6K",
"aydRUz8",
"MVUdQYK",
"kLvno0p",
"wScLiVz",
"Z0TII8i",
"F1SChho",
"9hRi2jN",
"lvzRF3W",
"fqHxOGI",
"1xeUYme",
"6tVqKyM",
"CCxZ6Wr",
"lMW0OPQ",
"wHVpHVG",
"Wj2PGRl",
"HlaTE8H",
"k5jALH0",
"3V37Hqr",
"Eq2uMTA",
"Vy9JShx",
"g9I2ZmK",
"Nu4RH7f",
"sWp0Dqd",
"bRKfspn",
"qawCMl5",
"2F6j2B4",
"fiJxCVA",
"pCAIlxD",
"zJx2skh",
"2Gdl1u7",
"aJJAY4c",
"ros6RLC",
"DKLBJh7",
"eyxH0Wc",
"rJEkEw4"]
return HTML("""
<video alt="test" controls autoplay=1>
<source src="https://openpuppies.com/mp4/%s.mp4" type="video/mp4">
</video>
"""%(random.sample(pups, 1)[0]))
# + [markdown]
# ## Puzzle 1 - ones
#
# Compute [ones](https://numpy.org/doc/stable/reference/generated/numpy.ones.html) - the vector of all ones.
# +
def ones_spec(out):
for i in range(len(out)):
out[i] = 1
# +
def ones(i: int) -> TT["i"]:
return where(arange(i) > -1, 1, 0) # arange(i) / arange(i)
# assert False, 'Not implemented yet.'
test_ones = make_test(ones, ones_spec, add_sizes=["i"])
# run_test(test_ones)
# + [markdown]
# ## Puzzle 2 - sum
#
# Compute [sum](https://numpy.org/doc/stable/reference/generated/numpy.sum.html) - the sum of a vector.
# +
def sum_spec(a, out):
out[0] = 0
for i in range(len(a)):
out[0] += a[i]
# +
def sum(a: TT["i"]) -> TT[1]:
return (a[None, :] @ ones(a.size(-1))[:, None])[0, 0]
# assert False, 'Not implemented yet.'
test_sum = make_test(sum, sum_spec)
# run_test(test_sum)
# + [markdown]
# ## Puzzle 3 - outer
#
# Compute [outer](https://numpy.org/doc/stable/reference/generated/numpy.outer.html) - the outer product of two vectors.
# +
def outer_spec(a, b, out):
for i in range(len(out)):
for j in range(len(out[0])):
out[i][j] = a[i] * b[j]
# +
def outer(a: TT["i"], b: TT["j"]) -> TT["i", "j"]:
return a[:, None] * b
# assert False, 'Not implemented yet.'
test_outer = make_test(outer, outer_spec)
# run_test(test_outer)
# + [markdown]
# ## Puzzle 4 - diag
#
# Compute [diag](https://numpy.org/doc/stable/reference/generated/numpy.diag.html) - the diagonal vector of a square matrix.
# +
def diag_spec(a, out):
for i in range(len(a)):
out[i] = a[i][i]
# +
def diag(a: TT["i", "i"]) -> TT["i"]:
return a[arange(a.size(-1)), arange(a.size(-1))]
# assert False, 'Not implemented yet.'
test_diag = make_test(diag, diag_spec)
# run_test(test_diag)
# + [markdown]
# ## Puzzle 5 - eye
#
# Compute [eye](https://numpy.org/doc/stable/reference/generated/numpy.eye.html) - the identity matrix.
# +
def eye_spec(out):
for i in range(len(out)):
out[i][i] = 1
# +
def eye(j: int) -> TT["j", "j"]:
return where(arange(j)[:, None] == arange(j)[None, :], 1, 0)
# assert False, 'Not implemented yet.'
# +
test_eye = make_test(eye, eye_spec, add_sizes=["j"])
# run_test(test_eye)
# + [markdown]
# ## Puzzle 6 - triu
#
# Compute [triu](https://numpy.org/doc/stable/reference/generated/numpy.triu.html) - the upper triangular matrix.
# +
def triu_spec(out):
for i in range(len(out)):
for j in range(len(out)):
if i <= j:
out[i][j] = 1
else:
out[i][j] = 0
# +
def triu(j: int) -> TT["j", "j"]:
return where(arange(j)[:, None] <= arange(j)[None, :], 1, 0)
# assert False, 'Not implemented yet.'
test_triu = make_test(triu, triu_spec, add_sizes=["j"])
# run_test(test_triu)
# + [markdown]
# ## Puzzle 7 - cumsum
#
# Compute [cumsum](https://numpy.org/doc/stable/reference/generated/numpy.cumsum.html) - the cumulative sum.
# +
def cumsum_spec(a, out):
total = 0
for i in range(len(out)):
out[i] = total + a[i]
total += a[i]
# +
def cumsum(a: TT["i"]) -> TT["i"]:
return ((1-triu(a.size(-1)))+eye(a.size(-1))) @ a
# assert False, 'Not implemented yet.'
test_cumsum = make_test(cumsum, cumsum_spec)
# run_test(test_cumsum)
# + [markdown]
# ## Puzzle 8 - diff
#
# Compute [diff](https://numpy.org/doc/stable/reference/generated/numpy.diff.html) - the running difference.
# +
def diff_spec(a, out):
out[0] = a[0]
for i in range(1, len(out)):
out[i] = a[i] - a[i - 1]
# +
def diff(a: TT["i"], i: int) -> TT["i"]:
return (eye(i)-where(arange(i)[:, None]==arange(i)+1, 1, 0)) @ a
# assert False, 'Not implemented yet.'
test_diff = make_test(diff, diff_spec, add_sizes=["i"])
# run_test(test_diff)
# + [markdown]
# ## Puzzle 9 - vstack
#
# Compute [vstack](https://numpy.org/doc/stable/reference/generated/numpy.vstack.html) - the matrix of two vectors
# +
def vstack_spec(a, b, out):
for i in range(len(out[0])):
out[0][i] = a[i]
out[1][i] = b[i]
# +
def vstack(a: TT["i"], b: TT["i"]) -> TT[2, "i"]:
return where(arange(2)[:, None]*ones(a.size(-1)) == 0, a, b)
# assert False, 'Not implemented yet.'
test_vstack = make_test(vstack, vstack_spec)
# run_test(test_vstack)
# + [markdown]
# ## Puzzle 10 - roll
#
# Compute [roll](https://numpy.org/doc/stable/reference/generated/numpy.roll.html) - the vector shifted 1 circular position.
# +
def roll_spec(a, out):
for i in range(len(out)):
if i + 1 < len(out):
out[i] = a[i + 1]
else:
out[i] = a[i + 1 - len(out)]
# +
def roll(a: TT["i"], i: int) -> TT["i"]:
return (where(arange(i)[:, None] == (arange(i)[None, :]-1+i)%i, 1, 0) @ a[:, None])[:, 0]
# assert False, 'Not implemented yet.'
test_roll = make_test(roll, roll_spec, add_sizes=["i"])
# run_test(test_roll)
# + [markdown]
# ## Puzzle 11 - flip
#
# Compute [flip](https://numpy.org/doc/stable/reference/generated/numpy.flip.html) - the reversed vector
# +
def flip_spec(a, out):
for i in range(len(out)):
out[i] = a[len(out) - i - 1]
# +
def flip(a: TT["i"], i: int) -> TT["i"]:
return (where(arange(i)[:, None] + arange(i)[None, :] == i-1, 1, 0) @ a[:, None])[:, 0]
# assert False, 'Not implemented yet.'
test_flip = make_test(flip, flip_spec, add_sizes=["i"])
# run_test(test_flip)
# + [markdown]
# ## Puzzle 12 - compress
#
#
# Compute [compress](https://numpy.org/doc/stable/reference/generated/numpy.flip.html) - keep only masked entries (left-aligned).
# +
def compress_spec(g, v, out):
j = 0
for i in range(len(g)):
if g[i]:
out[j] = v[i]
j += 1
# +
def compress(g: TT["i", bool], v: TT["i"], i:int) -> TT["i"]:
return (where((cumsum(g*1)*g-1)[None, :] == arange(i)[:, None], 1, 0) @ v[:, None])[:, 0]
# return ((eye(i)*g) @ v[:, None])[:, 0]
# assert False, 'Not implemented yet.'
test_compress = make_test(compress, compress_spec, add_sizes=["i"])
# run_test(test_compress)
# + [markdown]
# ## Puzzle 13 - pad_to
#
#
# Compute pad_to - eliminate or add 0s to change size of vector.
# + id="-DsZHgOTroVN"
def pad_to_spec(a, out):
for i in range(min(len(out), len(a))):
out[i] = a[i]
def pad_to(a: TT["i"], i: int, j: int) -> TT["j"]:
# return where(arange(j) < i, a, 0)
return (where(arange(j)[:, None] == arange(i)[None, :], 1, 0) @ a[:, None])[:, 0]
# assert False, 'Not implemented yet.'
test_pad_to = make_test(pad_to, pad_to_spec, add_sizes=["i", "j"])
# run_test(test_pad_to)
# + [markdown]
# ## Puzzle 14 - sequence_mask
#
#
# Compute [sequence_mask](https://www.tensorflow.org/api_docs/python/tf/sequence_mask) - pad out to length per batch.
# +
def sequence_mask_spec(values, length, out):
for i in range(len(out)):
for j in range(len(out[0])):
if j < length[i]:
out[i][j] = values[i][j]
else:
out[i][j] = 0
# +
def sequence_mask(values: TT["i", "j"], length: TT["i", int]) -> TT["i", "j"]:
return where(arange(values.size(-1))[None, :] < length[:, None], values, 0)
# assert False, 'Not implemented yet.'
def constraint_set_length(d):
d["length"] = d["length"] % d["values"].shape[0]
return d
test_sequence = make_test(
sequence_mask, sequence_mask_spec, constraint=constraint_set_length
)
# run_test(test_sequence)
# + [markdown]
# ## Puzzle 15 - bincount
#
# Compute [bincount](https://numpy.org/doc/stable/reference/generated/numpy.bincount.html) - count number of times an entry was seen.
# +
def bincount_spec(a, out):
for i in range(len(a)):
out[a[i]] += 1
# +
def bincount(a: TT["i"], j: int) -> TT["j"]:
return (where(a[None, :] == arange(j)[:, None], 1, 0) @ ones(a.size(-1))[:, None])[:, 0]
# assert False, 'Not implemented yet.'
def constraint_set_max(d):
d["a"] = d["a"] % d["return"].shape[0]
return d
test_bincount = make_test(
bincount, bincount_spec, add_sizes=["j"], constraint=constraint_set_max
)
# run_test(test_bincount)
# + [markdown]
# ## Puzzle 16 - scatter_add
#
# Compute `scatter_add` - add togeter values that scatter together.
# +
def scatter_add_spec(values, link, out):
for j in range(len(link)):
out[j] += values[link[j]]
# +
def scatter_add(values: TT["i"], link: TT["j"], j: int) -> TT["j"]:
return (where(link[:, None] == arange(values.size(-1))[None, :], 1, 0) @ values[:, None])[:, 0]
# assert False, 'Not implemented yet.'
def constraint_set_max(d):
d["link"] = d["link"] % d["values"].shape[0]
return d
test_scatter_add = make_test(
scatter_add, scatter_add_spec, add_sizes=["j"], constraint=constraint_set_max
)
# run_test(test_scatter_add)