forked from netdata/netdata
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathquery.c
1005 lines (839 loc) · 39.2 KB
/
query.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
// SPDX-License-Identifier: GPL-3.0-or-later
#include "query.h"
#include "web/api/formatters/rrd2json.h"
#include "rrdr.h"
#include "average/average.h"
#include "incremental_sum/incremental_sum.h"
#include "max/max.h"
#include "median/median.h"
#include "min/min.h"
#include "sum/sum.h"
#include "stddev/stddev.h"
#include "ses/ses.h"
#include "des/des.h"
// ----------------------------------------------------------------------------
static struct {
const char *name;
uint32_t hash;
RRDR_GROUPING value;
// One time initialization for the module.
// This is called once, when netdata starts.
void (*init)(void);
// Allocate all required structures for a query.
// This is called once for each netdata query.
void *(*create)(struct rrdresult *r);
// Cleanup collected values, but don't destroy the structures.
// This is called when the query engine switches dimensions,
// as part of the same query (so same chart, switching metric).
void (*reset)(struct rrdresult *r);
// Free all resources allocated for the query.
void (*free)(struct rrdresult *r);
// Add a single value into the calculation.
// The module may decide to cache it, or use it in the fly.
void (*add)(struct rrdresult *r, calculated_number value);
// Generate a single result for the values added so far.
// More values and points may be requested later.
// It is up to the module to reset its internal structures
// when flushing it (so for a few modules it may be better to
// continue after a flush as if nothing changed, for others a
// cleanup of the internal structures may be required).
calculated_number (*flush)(struct rrdresult *r, RRDR_VALUE_FLAGS *rrdr_value_options_ptr);
} api_v1_data_groups[] = {
{.name = "average",
.hash = 0,
.value = RRDR_GROUPING_AVERAGE,
.init = NULL,
.create= grouping_create_average,
.reset = grouping_reset_average,
.free = grouping_free_average,
.add = grouping_add_average,
.flush = grouping_flush_average
},
{.name = "mean", // alias on 'average'
.hash = 0,
.value = RRDR_GROUPING_AVERAGE,
.init = NULL,
.create= grouping_create_average,
.reset = grouping_reset_average,
.free = grouping_free_average,
.add = grouping_add_average,
.flush = grouping_flush_average
},
{.name = "incremental_sum",
.hash = 0,
.value = RRDR_GROUPING_INCREMENTAL_SUM,
.init = NULL,
.create= grouping_create_incremental_sum,
.reset = grouping_reset_incremental_sum,
.free = grouping_free_incremental_sum,
.add = grouping_add_incremental_sum,
.flush = grouping_flush_incremental_sum
},
{.name = "incremental-sum",
.hash = 0,
.value = RRDR_GROUPING_INCREMENTAL_SUM,
.init = NULL,
.create= grouping_create_incremental_sum,
.reset = grouping_reset_incremental_sum,
.free = grouping_free_incremental_sum,
.add = grouping_add_incremental_sum,
.flush = grouping_flush_incremental_sum
},
{.name = "median",
.hash = 0,
.value = RRDR_GROUPING_MEDIAN,
.init = NULL,
.create= grouping_create_median,
.reset = grouping_reset_median,
.free = grouping_free_median,
.add = grouping_add_median,
.flush = grouping_flush_median
},
{.name = "min",
.hash = 0,
.value = RRDR_GROUPING_MIN,
.init = NULL,
.create= grouping_create_min,
.reset = grouping_reset_min,
.free = grouping_free_min,
.add = grouping_add_min,
.flush = grouping_flush_min
},
{.name = "max",
.hash = 0,
.value = RRDR_GROUPING_MAX,
.init = NULL,
.create= grouping_create_max,
.reset = grouping_reset_max,
.free = grouping_free_max,
.add = grouping_add_max,
.flush = grouping_flush_max
},
{.name = "sum",
.hash = 0,
.value = RRDR_GROUPING_SUM,
.init = NULL,
.create= grouping_create_sum,
.reset = grouping_reset_sum,
.free = grouping_free_sum,
.add = grouping_add_sum,
.flush = grouping_flush_sum
},
// standard deviation
{.name = "stddev",
.hash = 0,
.value = RRDR_GROUPING_STDDEV,
.init = NULL,
.create= grouping_create_stddev,
.reset = grouping_reset_stddev,
.free = grouping_free_stddev,
.add = grouping_add_stddev,
.flush = grouping_flush_stddev
},
{.name = "cv", // coefficient variation is calculated by stddev
.hash = 0,
.value = RRDR_GROUPING_CV,
.init = NULL,
.create= grouping_create_stddev, // not an error, stddev calculates this too
.reset = grouping_reset_stddev, // not an error, stddev calculates this too
.free = grouping_free_stddev, // not an error, stddev calculates this too
.add = grouping_add_stddev, // not an error, stddev calculates this too
.flush = grouping_flush_coefficient_of_variation
},
{.name = "rsd", // alias of 'cv'
.hash = 0,
.value = RRDR_GROUPING_CV,
.init = NULL,
.create= grouping_create_stddev, // not an error, stddev calculates this too
.reset = grouping_reset_stddev, // not an error, stddev calculates this too
.free = grouping_free_stddev, // not an error, stddev calculates this too
.add = grouping_add_stddev, // not an error, stddev calculates this too
.flush = grouping_flush_coefficient_of_variation
},
/*
{.name = "mean", // same as average, no need to define it again
.hash = 0,
.value = RRDR_GROUPING_MEAN,
.setup = NULL,
.create= grouping_create_stddev,
.reset = grouping_reset_stddev,
.free = grouping_free_stddev,
.add = grouping_add_stddev,
.flush = grouping_flush_mean
},
*/
/*
{.name = "variance", // meaningless to offer
.hash = 0,
.value = RRDR_GROUPING_VARIANCE,
.setup = NULL,
.create= grouping_create_stddev,
.reset = grouping_reset_stddev,
.free = grouping_free_stddev,
.add = grouping_add_stddev,
.flush = grouping_flush_variance
},
*/
// single exponential smoothing
{.name = "ses",
.hash = 0,
.value = RRDR_GROUPING_SES,
.init = grouping_init_ses,
.create= grouping_create_ses,
.reset = grouping_reset_ses,
.free = grouping_free_ses,
.add = grouping_add_ses,
.flush = grouping_flush_ses
},
{.name = "ema", // alias for 'ses'
.hash = 0,
.value = RRDR_GROUPING_SES,
.init = NULL,
.create= grouping_create_ses,
.reset = grouping_reset_ses,
.free = grouping_free_ses,
.add = grouping_add_ses,
.flush = grouping_flush_ses
},
{.name = "ewma", // alias for ses
.hash = 0,
.value = RRDR_GROUPING_SES,
.init = NULL,
.create= grouping_create_ses,
.reset = grouping_reset_ses,
.free = grouping_free_ses,
.add = grouping_add_ses,
.flush = grouping_flush_ses
},
// double exponential smoothing
{.name = "des",
.hash = 0,
.value = RRDR_GROUPING_DES,
.init = grouping_init_des,
.create= grouping_create_des,
.reset = grouping_reset_des,
.free = grouping_free_des,
.add = grouping_add_des,
.flush = grouping_flush_des
},
// terminator
{.name = NULL,
.hash = 0,
.value = RRDR_GROUPING_UNDEFINED,
.init = NULL,
.create= grouping_create_average,
.reset = grouping_reset_average,
.free = grouping_free_average,
.add = grouping_add_average,
.flush = grouping_flush_average
}
};
void web_client_api_v1_init_grouping(void) {
int i;
for(i = 0; api_v1_data_groups[i].name ; i++) {
api_v1_data_groups[i].hash = simple_hash(api_v1_data_groups[i].name);
if(api_v1_data_groups[i].init)
api_v1_data_groups[i].init();
}
}
const char *group_method2string(RRDR_GROUPING group) {
int i;
for(i = 0; api_v1_data_groups[i].name ; i++) {
if(api_v1_data_groups[i].value == group) {
return api_v1_data_groups[i].name;
}
}
return "unknown-group-method";
}
RRDR_GROUPING web_client_api_request_v1_data_group(const char *name, RRDR_GROUPING def) {
int i;
uint32_t hash = simple_hash(name);
for(i = 0; api_v1_data_groups[i].name ; i++)
if(unlikely(hash == api_v1_data_groups[i].hash && !strcmp(name, api_v1_data_groups[i].name)))
return api_v1_data_groups[i].value;
return def;
}
// ----------------------------------------------------------------------------
static void rrdr_disable_not_selected_dimensions(RRDR *r, RRDR_OPTIONS options, const char *dims) {
rrdset_check_rdlock(r->st);
if(unlikely(!dims || !*dims || (dims[0] == '*' && dims[1] == '\0'))) return;
int match_ids = 0, match_names = 0;
if(unlikely(options & RRDR_OPTION_MATCH_IDS))
match_ids = 1;
if(unlikely(options & RRDR_OPTION_MATCH_NAMES))
match_names = 1;
if(likely(!match_ids && !match_names))
match_ids = match_names = 1;
SIMPLE_PATTERN *pattern = simple_pattern_create(dims, ",|\t\r\n\f\v", SIMPLE_PATTERN_EXACT);
RRDDIM *d;
long c, dims_selected = 0, dims_not_hidden_not_zero = 0;
for(c = 0, d = r->st->dimensions; d ;c++, d = d->next) {
if( (match_ids && simple_pattern_matches(pattern, d->id))
|| (match_names && simple_pattern_matches(pattern, d->name))
) {
r->od[c] |= RRDR_DIMENSION_SELECTED;
if(unlikely(r->od[c] & RRDR_DIMENSION_HIDDEN)) r->od[c] &= ~RRDR_DIMENSION_HIDDEN;
dims_selected++;
// since the user needs this dimension
// make it appear as NONZERO, to return it
// even if the dimension has only zeros
// unless option non_zero is set
if(unlikely(!(options & RRDR_OPTION_NONZERO)))
r->od[c] |= RRDR_DIMENSION_NONZERO;
// count the visible dimensions
if(likely(r->od[c] & RRDR_DIMENSION_NONZERO))
dims_not_hidden_not_zero++;
}
else {
r->od[c] |= RRDR_DIMENSION_HIDDEN;
if(unlikely(r->od[c] & RRDR_DIMENSION_SELECTED)) r->od[c] &= ~RRDR_DIMENSION_SELECTED;
}
}
simple_pattern_free(pattern);
// check if all dimensions are hidden
if(unlikely(!dims_not_hidden_not_zero && dims_selected)) {
// there are a few selected dimensions
// but they are all zero
// enable the selected ones
// to avoid returning an empty chart
for(c = 0, d = r->st->dimensions; d ;c++, d = d->next)
if(unlikely(r->od[c] & RRDR_DIMENSION_SELECTED))
r->od[c] |= RRDR_DIMENSION_NONZERO;
}
}
// ----------------------------------------------------------------------------
// helpers to find our way in RRDR
static inline RRDR_VALUE_FLAGS *rrdr_line_options(RRDR *r, long rrdr_line) {
return &r->o[ rrdr_line * r->d ];
}
static inline calculated_number *rrdr_line_values(RRDR *r, long rrdr_line) {
return &r->v[ rrdr_line * r->d ];
}
static inline long rrdr_line_init(RRDR *r, time_t t, long rrdr_line) {
rrdr_line++;
#ifdef NETDATA_INTERNAL_CHECKS
if(unlikely(rrdr_line >= r->n))
error("INTERNAL ERROR: requested to step above RRDR size for chart '%s'", r->st->name);
if(unlikely(r->t[rrdr_line] != 0 && r->t[rrdr_line] != t))
error("INTERNAL ERROR: overwriting the timestamp of RRDR line %zu from %zu to %zu, of chart '%s'", (size_t)rrdr_line, (size_t)r->t[rrdr_line], (size_t)t, r->st->name);
#endif
// save the time
r->t[rrdr_line] = t;
return rrdr_line;
}
static inline void rrdr_done(RRDR *r, long rrdr_line) {
r->rows = rrdr_line + 1;
}
// ----------------------------------------------------------------------------
// fill RRDR for a single dimension
static inline void do_dimension(
RRDR *r
, long points_wanted
, RRDDIM *rd
, long dim_id_in_rrdr
, time_t after_wanted
, time_t before_wanted
){
RRDSET *st = r->st;
time_t
now = after_wanted,
dt = st->update_every,
max_date = 0,
min_date = 0;
long
group_size = r->group,
points_added = 0,
values_in_group = 0,
values_in_group_non_zero = 0,
rrdr_line = -1;
RRDR_VALUE_FLAGS
group_value_flags = RRDR_VALUE_NOTHING;
struct rrddim_query_handle handle;
uint8_t initialized_query;
calculated_number min = r->min, max = r->max;
size_t db_points_read = 0;
for(initialized_query = 0 ; points_added < points_wanted ; now += dt) {
// make sure we return data in the proper time range
if(unlikely(now > before_wanted)) {
#ifdef NETDATA_INTERNAL_CHECKS
r->internal.log = "stopped, because attempted to access the db after 'wanted before'";
#endif
break;
}
if(unlikely(now < after_wanted)) {
#ifdef NETDATA_INTERNAL_CHECKS
r->internal.log = "skipped, because attempted to access the db before 'wanted after'";
#endif
continue;
}
if (unlikely(!initialized_query)) {
rd->state->query_ops.init(rd, &handle, now, before_wanted);
initialized_query = 1;
}
// read the value from the database
//storage_number n = rd->values[slot];
#ifdef NETDATA_INTERNAL_CHECKS
if (rd->rrd_memory_mode == RRD_MEMORY_MODE_DBENGINE) {
#ifdef ENABLE_DBENGINE
if (now != handle.rrdeng.now)
error("INTERNAL CHECK: Unaligned query for %s, database time: %ld, expected time: %ld", rd->id, (long)handle.rrdeng.now, (long)now);
#endif
} else if (rrdset_time2slot(st, now) != (long unsigned)handle.slotted.slot) {
error("INTERNAL CHECK: Unaligned query for %s, database slot: %lu, expected slot: %lu", rd->id, (long unsigned)handle.slotted.slot, rrdset_time2slot(st, now));
}
#endif
storage_number n = rd->state->query_ops.next_metric(&handle);
calculated_number value = NAN;
if(likely(does_storage_number_exist(n))) {
value = unpack_storage_number(n);
if(likely(value != 0.0))
values_in_group_non_zero++;
if(unlikely(did_storage_number_reset(n)))
group_value_flags |= RRDR_VALUE_RESET;
}
// add this value for grouping
r->internal.grouping_add(r, value);
values_in_group++;
db_points_read++;
if(unlikely(values_in_group == group_size)) {
rrdr_line = rrdr_line_init(r, now, rrdr_line);
if(unlikely(!min_date)) min_date = now;
max_date = now;
// find the place to store our values
RRDR_VALUE_FLAGS *rrdr_value_options_ptr = &r->o[rrdr_line * r->d + dim_id_in_rrdr];
// update the dimension options
if(likely(values_in_group_non_zero))
r->od[dim_id_in_rrdr] |= RRDR_DIMENSION_NONZERO;
// store the specific point options
*rrdr_value_options_ptr = group_value_flags;
// store the value
calculated_number value = r->internal.grouping_flush(r, rrdr_value_options_ptr);
r->v[rrdr_line * r->d + dim_id_in_rrdr] = value;
if(likely(points_added || dim_id_in_rrdr)) {
// find the min/max across all dimensions
if(unlikely(value < min)) min = value;
if(unlikely(value > max)) max = value;
}
else {
// runs only when dim_id_in_rrdr == 0 && points_added == 0
// so, on the first point added for the query.
min = max = value;
}
points_added++;
values_in_group = 0;
group_value_flags = RRDR_VALUE_NOTHING;
values_in_group_non_zero = 0;
}
}
if (likely(initialized_query))
rd->state->query_ops.finalize(&handle);
r->internal.db_points_read += db_points_read;
r->internal.result_points_generated += points_added;
r->min = min;
r->max = max;
r->before = max_date;
r->after = min_date - (r->group - 1) * r->st->update_every;
rrdr_done(r, rrdr_line);
#ifdef NETDATA_INTERNAL_CHECKS
if(unlikely(r->rows != points_added))
error("INTERNAL ERROR: %s.%s added %zu rows, but RRDR says I added %zu.", r->st->name, rd->name, (size_t)points_added, (size_t)r->rows);
#endif
}
// ----------------------------------------------------------------------------
// fill RRDR for the whole chart
#ifdef NETDATA_INTERNAL_CHECKS
static void rrd2rrdr_log_request_response_metdata(RRDR *r
, RRDR_GROUPING group_method
, int aligned
, long group
, long resampling_time
, long resampling_group
, time_t after_wanted
, time_t after_requested
, time_t before_wanted
, time_t before_requested
, long points_requested
, long points_wanted
//, size_t after_slot
//, size_t before_slot
, const char *msg
) {
info("INTERNAL ERROR: rrd2rrdr() on %s update every %d with %s grouping %s (group: %ld, resampling_time: %ld, resampling_group: %ld), "
"after (got: %zu, want: %zu, req: %zu, db: %zu), "
"before (got: %zu, want: %zu, req: %zu, db: %zu), "
"duration (got: %zu, want: %zu, req: %zu, db: %zu), "
//"slot (after: %zu, before: %zu, delta: %zu), "
"points (got: %ld, want: %ld, req: %ld, db: %ld), "
"%s"
, r->st->name
, r->st->update_every
// grouping
, (aligned) ? "aligned" : "unaligned"
, group_method2string(group_method)
, group
, resampling_time
, resampling_group
// after
, (size_t)r->after
, (size_t)after_wanted
, (size_t)after_requested
, (size_t)rrdset_first_entry_t(r->st)
// before
, (size_t)r->before
, (size_t)before_wanted
, (size_t)before_requested
, (size_t)rrdset_last_entry_t(r->st)
// duration
, (size_t)(r->before - r->after + r->st->update_every)
, (size_t)(before_wanted - after_wanted + r->st->update_every)
, (size_t)(before_requested - after_requested)
, (size_t)((rrdset_last_entry_t(r->st) - rrdset_first_entry_t(r->st)) + r->st->update_every)
// slot
/*
, after_slot
, before_slot
, (after_slot > before_slot) ? (r->st->entries - after_slot + before_slot) : (before_slot - after_slot)
*/
// points
, r->rows
, points_wanted
, points_requested
, r->st->entries
// message
, msg
);
}
#endif // NETDATA_INTERNAL_CHECKS
RRDR *rrd2rrdr(
RRDSET *st
, long points_requested
, long long after_requested
, long long before_requested
, RRDR_GROUPING group_method
, long resampling_time_requested
, RRDR_OPTIONS options
, const char *dimensions
) {
int aligned = !(options & RRDR_OPTION_NOT_ALIGNED);
int absolute_period_requested = -1;
time_t first_entry_t = rrdset_first_entry_t(st);
time_t last_entry_t = rrdset_last_entry_t(st);
if(before_requested == 0 && after_requested == 0) {
// dump the all the data
before_requested = last_entry_t;
after_requested = first_entry_t;
absolute_period_requested = 0;
}
// allow relative for before (smaller than API_RELATIVE_TIME_MAX)
if(((before_requested < 0)?-before_requested:before_requested) <= API_RELATIVE_TIME_MAX) {
if(abs(before_requested) % st->update_every) {
// make sure it is multiple of st->update_every
if(before_requested < 0) before_requested = before_requested - st->update_every - before_requested % st->update_every;
else before_requested = before_requested + st->update_every - before_requested % st->update_every;
}
if(before_requested > 0) before_requested = first_entry_t + before_requested;
else before_requested = last_entry_t + before_requested;
absolute_period_requested = 0;
}
// allow relative for after (smaller than API_RELATIVE_TIME_MAX)
if(((after_requested < 0)?-after_requested:after_requested) <= API_RELATIVE_TIME_MAX) {
if(after_requested == 0) after_requested = -st->update_every;
if(abs(after_requested) % st->update_every) {
// make sure it is multiple of st->update_every
if(after_requested < 0) after_requested = after_requested - st->update_every - after_requested % st->update_every;
else after_requested = after_requested + st->update_every - after_requested % st->update_every;
}
after_requested = before_requested + after_requested;
absolute_period_requested = 0;
}
if(absolute_period_requested == -1)
absolute_period_requested = 1;
// make sure they are within our timeframe
if(before_requested > last_entry_t) before_requested = last_entry_t;
if(before_requested < first_entry_t) before_requested = first_entry_t;
if(after_requested > last_entry_t) after_requested = last_entry_t;
if(after_requested < first_entry_t) after_requested = first_entry_t;
// check if they are reversed
if(after_requested > before_requested) {
time_t tmp = before_requested;
before_requested = after_requested;
after_requested = tmp;
}
// the duration of the chart
time_t duration = before_requested - after_requested;
long available_points = duration / st->update_every;
if(duration <= 0 || available_points <= 0)
return rrdr_create(st, 1);
// check the number of wanted points in the result
if(unlikely(points_requested < 0)) points_requested = -points_requested;
if(unlikely(points_requested > available_points)) points_requested = available_points;
if(unlikely(points_requested == 0)) points_requested = available_points;
// calculate the desired grouping of source data points
long group = available_points / points_requested;
if(unlikely(group <= 0)) group = 1;
if(unlikely(available_points % points_requested > points_requested / 2)) group++; // rounding to the closest integer
// resampling_time_requested enforces a certain grouping multiple
calculated_number resampling_divisor = 1.0;
long resampling_group = 1;
if(unlikely(resampling_time_requested > st->update_every)) {
if (unlikely(resampling_time_requested > duration)) {
// group_time is above the available duration
#ifdef NETDATA_INTERNAL_CHECKS
info("INTERNAL CHECK: %s: requested gtime %ld secs, is greater than the desired duration %ld secs", st->id, resampling_time_requested, duration);
#endif
after_requested = before_requested - resampling_time_requested;
duration = before_requested - after_requested;
available_points = duration / st->update_every;
group = available_points / points_requested;
}
// if the duration is not aligned to resampling time
// extend the duration to the past, to avoid a gap at the chart
// only when the missing duration is above 1/10th of a point
if(duration % resampling_time_requested) {
time_t delta = duration % resampling_time_requested;
if(delta > resampling_time_requested / 10) {
after_requested -= resampling_time_requested - delta;
duration = before_requested - after_requested;
available_points = duration / st->update_every;
group = available_points / points_requested;
}
}
// the points we should group to satisfy gtime
resampling_group = resampling_time_requested / st->update_every;
if(unlikely(resampling_time_requested % st->update_every)) {
#ifdef NETDATA_INTERNAL_CHECKS
info("INTERNAL CHECK: %s: requested gtime %ld secs, is not a multiple of the chart's data collection frequency %d secs", st->id, resampling_time_requested, st->update_every);
#endif
resampling_group++;
}
// adapt group according to resampling_group
if(unlikely(group < resampling_group)) group = resampling_group; // do not allow grouping below the desired one
if(unlikely(group % resampling_group)) group += resampling_group - (group % resampling_group); // make sure group is multiple of resampling_group
//resampling_divisor = group / resampling_group;
resampling_divisor = (calculated_number)(group * st->update_every) / (calculated_number)resampling_time_requested;
}
// now that we have group,
// align the requested timeframe to fit it.
if(aligned) {
// alignement has been requested, so align the values
before_requested -= (before_requested % group);
after_requested -= (after_requested % group);
}
// we align the request on requested_before
time_t before_wanted = before_requested;
if(likely(before_wanted > last_entry_t)) {
#ifdef NETDATA_INTERNAL_CHECKS
error("INTERNAL ERROR: rrd2rrdr() on %s, before_wanted is after db max", st->name);
#endif
before_wanted = last_entry_t - (last_entry_t % ( ((aligned)?group:1) * st->update_every ));
}
//size_t before_slot = rrdset_time2slot(st, before_wanted);
// we need to estimate the number of points, for having
// an integer number of values per point
long points_wanted = (before_wanted - after_requested) / (st->update_every * group);
time_t after_wanted = before_wanted - (points_wanted * group * st->update_every) + st->update_every;
if(unlikely(after_wanted < first_entry_t)) {
// hm... we go to the past, calculate again points_wanted using all the db from before_wanted to the beginning
points_wanted = (before_wanted - first_entry_t) / group;
// recalculate after wanted with the new number of points
after_wanted = before_wanted - (points_wanted * group * st->update_every) + st->update_every;
if(unlikely(after_wanted < first_entry_t)) {
#ifdef NETDATA_INTERNAL_CHECKS
error("INTERNAL ERROR: rrd2rrdr() on %s, after_wanted is before db min", st->name);
#endif
after_wanted = first_entry_t - (first_entry_t % ( ((aligned)?group:1) * st->update_every )) + ( ((aligned)?group:1) * st->update_every );
}
}
//size_t after_slot = rrdset_time2slot(st, after_wanted);
// check if they are reversed
if(unlikely(after_wanted > before_wanted)) {
#ifdef NETDATA_INTERNAL_CHECKS
error("INTERNAL ERROR: rrd2rrdr() on %s, reversed wanted after/before", st->name);
#endif
time_t tmp = before_wanted;
before_wanted = after_wanted;
after_wanted = tmp;
}
// recalculate points_wanted using the final time-frame
points_wanted = (before_wanted - after_wanted) / st->update_every / group + 1;
if(unlikely(points_wanted < 0)) {
#ifdef NETDATA_INTERNAL_CHECKS
error("INTERNAL ERROR: rrd2rrdr() on %s, points_wanted is %ld", st->name, points_wanted);
#endif
points_wanted = 0;
}
#ifdef NETDATA_INTERNAL_CHECKS
duration = before_wanted - after_wanted;
if(after_wanted < first_entry_t)
error("INTERNAL CHECK: after_wanted %u is too small, minimum %u", (uint32_t)after_wanted, (uint32_t)first_entry_t);
if(after_wanted > last_entry_t)
error("INTERNAL CHECK: after_wanted %u is too big, maximum %u", (uint32_t)after_wanted, (uint32_t)last_entry_t);
if(before_wanted < first_entry_t)
error("INTERNAL CHECK: before_wanted %u is too small, minimum %u", (uint32_t)before_wanted, (uint32_t)first_entry_t);
if(before_wanted > last_entry_t)
error("INTERNAL CHECK: before_wanted %u is too big, maximum %u", (uint32_t)before_wanted, (uint32_t)last_entry_t);
/*
if(before_slot >= (size_t)st->entries)
error("INTERNAL CHECK: before_slot is invalid %zu, expected 0 to %ld", before_slot, st->entries - 1);
if(after_slot >= (size_t)st->entries)
error("INTERNAL CHECK: after_slot is invalid %zu, expected 0 to %ld", after_slot, st->entries - 1);
*/
if(points_wanted > (before_wanted - after_wanted) / group / st->update_every + 1)
error("INTERNAL CHECK: points_wanted %ld is more than points %ld", points_wanted, (before_wanted - after_wanted) / group / st->update_every + 1);
if(group < resampling_group)
error("INTERNAL CHECK: group %ld is less than the desired group points %ld", group, resampling_group);
if(group > resampling_group && group % resampling_group)
error("INTERNAL CHECK: group %ld is not a multiple of the desired group points %ld", group, resampling_group);
#endif
// -------------------------------------------------------------------------
// initialize our result set
// this also locks the chart for us
RRDR *r = rrdr_create(st, points_wanted);
if(unlikely(!r)) {
#ifdef NETDATA_INTERNAL_CHECKS
error("INTERNAL CHECK: Cannot create RRDR for %s, after=%u, before=%u, duration=%u, points=%ld", st->id, (uint32_t)after_wanted, (uint32_t)before_wanted, (uint32_t)duration, points_wanted);
#endif
return NULL;
}
if(unlikely(!r->d || !points_wanted)) {
#ifdef NETDATA_INTERNAL_CHECKS
error("INTERNAL CHECK: Returning empty RRDR (no dimensions in RRDSET) for %s, after=%u, before=%u, duration=%zu, points=%ld", st->id, (uint32_t)after_wanted, (uint32_t)before_wanted, (size_t)duration, points_wanted);
#endif
return r;
}
if(unlikely(absolute_period_requested == 1))
r->result_options |= RRDR_RESULT_OPTION_ABSOLUTE;
else
r->result_options |= RRDR_RESULT_OPTION_RELATIVE;
// find how many dimensions we have
long dimensions_count = r->d;
// -------------------------------------------------------------------------
// initialize RRDR
r->group = group;
r->update_every = (int)group * st->update_every;
r->before = before_wanted;
r->after = after_wanted;
r->internal.points_wanted = points_wanted;
r->internal.resampling_group = resampling_group;
r->internal.resampling_divisor = resampling_divisor;
// -------------------------------------------------------------------------
// assign the processor functions
{
int i, found = 0;
for(i = 0; !found && api_v1_data_groups[i].name ;i++) {
if(api_v1_data_groups[i].value == group_method) {
r->internal.grouping_create= api_v1_data_groups[i].create;
r->internal.grouping_reset = api_v1_data_groups[i].reset;
r->internal.grouping_free = api_v1_data_groups[i].free;
r->internal.grouping_add = api_v1_data_groups[i].add;
r->internal.grouping_flush = api_v1_data_groups[i].flush;
found = 1;
}
}
if(!found) {
errno = 0;
#ifdef NETDATA_INTERNAL_CHECKS
error("INTERNAL ERROR: grouping method %u not found for chart '%s'. Using 'average'", (unsigned int)group_method, r->st->name);
#endif
r->internal.grouping_create= grouping_create_average;
r->internal.grouping_reset = grouping_reset_average;
r->internal.grouping_free = grouping_free_average;
r->internal.grouping_add = grouping_add_average;
r->internal.grouping_flush = grouping_flush_average;
}
}
// allocate any memory required by the grouping method
r->internal.grouping_data = r->internal.grouping_create(r);
// -------------------------------------------------------------------------
// disable the not-wanted dimensions
rrdset_check_rdlock(st);
if(dimensions)
rrdr_disable_not_selected_dimensions(r, options, dimensions);
// -------------------------------------------------------------------------
// do the work for each dimension
time_t max_after = 0, min_before = 0;
long max_rows = 0;
RRDDIM *rd;
long c, dimensions_used = 0, dimensions_nonzero = 0;
for(rd = st->dimensions, c = 0 ; rd && c < dimensions_count ; rd = rd->next, c++) {
// if we need a percentage, we need to calculate all dimensions
if(unlikely(!(options & RRDR_OPTION_PERCENTAGE) && (r->od[c] & RRDR_DIMENSION_HIDDEN))) {
if(unlikely(r->od[c] & RRDR_DIMENSION_SELECTED)) r->od[c] &= ~RRDR_DIMENSION_SELECTED;
continue;
}
r->od[c] |= RRDR_DIMENSION_SELECTED;
// reset the grouping for the new dimension
r->internal.grouping_reset(r);
do_dimension(
r
, points_wanted
, rd
, c
, after_wanted
, before_wanted
);
if(r->od[c] & RRDR_DIMENSION_NONZERO)
dimensions_nonzero++;
// verify all dimensions are aligned
if(unlikely(!dimensions_used)) {
min_before = r->before;
max_after = r->after;
max_rows = r->rows;
}
else {
if(r->after != max_after) {
#ifdef NETDATA_INTERNAL_CHECKS
error("INTERNAL ERROR: 'after' mismatch between dimensions for chart '%s': max is %zu, dimension '%s' has %zu",
st->name, (size_t)max_after, rd->name, (size_t)r->after);
#endif
r->after = (r->after > max_after) ? r->after : max_after;
}
if(r->before != min_before) {
#ifdef NETDATA_INTERNAL_CHECKS
error("INTERNAL ERROR: 'before' mismatch between dimensions for chart '%s': max is %zu, dimension '%s' has %zu",
st->name, (size_t)min_before, rd->name, (size_t)r->before);
#endif
r->before = (r->before < min_before) ? r->before : min_before;
}
if(r->rows != max_rows) {
#ifdef NETDATA_INTERNAL_CHECKS
error("INTERNAL ERROR: 'rows' mismatch between dimensions for chart '%s': max is %zu, dimension '%s' has %zu",
st->name, (size_t)max_rows, rd->name, (size_t)r->rows);
#endif
r->rows = (r->rows > max_rows) ? r->rows : max_rows;
}
}
dimensions_used++;
}
#ifdef NETDATA_INTERNAL_CHECKS
if(r->internal.log)
rrd2rrdr_log_request_response_metdata(r, group_method, aligned, group, resampling_time_requested, resampling_group, after_wanted, after_requested, before_wanted, before_requested, points_requested, points_wanted, /*after_slot, before_slot,*/ r->internal.log);
if(r->rows != points_wanted)
rrd2rrdr_log_request_response_metdata(r, group_method, aligned, group, resampling_time_requested, resampling_group, after_wanted, after_requested, before_wanted, before_requested, points_requested, points_wanted, /*after_slot, before_slot,*/ "got 'points' is not wanted 'points'");
if(aligned && (r->before % group) != 0)
rrd2rrdr_log_request_response_metdata(r, group_method, aligned, group, resampling_time_requested, resampling_group, after_wanted, after_requested, before_wanted, before_requested, points_requested, points_wanted, /*after_slot, before_slot,*/ "'before' is not aligned but alignment is required");
// 'after' should not be aligned, since we start inside the first group
//if(aligned && (r->after % group) != 0)
// rrd2rrdr_log_request_response_metdata(r, group_method, aligned, group, resampling_time_requested, resampling_group, after_wanted, after_requested, before_wanted, before_requested, points_requested, points_wanted, after_slot, before_slot, "'after' is not aligned but alignment is required");
if(r->before != before_requested)
rrd2rrdr_log_request_response_metdata(r, group_method, aligned, group, resampling_time_requested, resampling_group, after_wanted, after_requested, before_wanted, before_requested, points_requested, points_wanted, /*after_slot, before_slot,*/ "chart is not aligned to requested 'before'");
if(r->before != before_wanted)
rrd2rrdr_log_request_response_metdata(r, group_method, aligned, group, resampling_time_requested, resampling_group, after_wanted, after_requested, before_wanted, before_requested, points_requested, points_wanted, /*after_slot, before_slot,*/ "got 'before' is not wanted 'before'");
// reported 'after' varies, depending on group
if(r->after != after_wanted)
rrd2rrdr_log_request_response_metdata(r, group_method, aligned, group, resampling_time_requested, resampling_group, after_wanted, after_requested, before_wanted, before_requested, points_requested, points_wanted, /*after_slot, before_slot,*/ "got 'after' is not wanted 'after'");
#endif
// free all resources used by the grouping method
r->internal.grouping_free(r);
// when all the dimensions are zero, we should return all of them
if(unlikely(options & RRDR_OPTION_NONZERO && !dimensions_nonzero)) {
// all the dimensions are zero
// mark them as NONZERO to send them all
for(rd = st->dimensions, c = 0 ; rd && c < dimensions_count ; rd = rd->next, c++) {
if(unlikely(r->od[c] & RRDR_DIMENSION_HIDDEN)) continue;
r->od[c] |= RRDR_DIMENSION_NONZERO;
}