-
Notifications
You must be signed in to change notification settings - Fork 1
/
run.py
97 lines (80 loc) · 4.11 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
import matplotlib
import torch
matplotlib.use('Agg')
import os
import yaml
from argparse import ArgumentParser
from time import gmtime, strftime
from shutil import copy
from frames_dataset import FramesDataset
from modules.generator import MotionTransferGenerator, MotionEmbeddingGenerator
from modules.discriminator import Discriminator
from modules.keypoint_detector import KPDetector
from train import train
from reconstruction import reconstruction
from transfer import transfer
from prediction import prediction
from motion import train_motion_embedding
if __name__ == "__main__":
parser = ArgumentParser()
parser.add_argument("--config", required=True, help="path to config")
parser.add_argument("--mode", default="train", choices=["train_motion_embedding", "train", "reconstruction", "transfer", "prediction"])
parser.add_argument("--log_dir", default='log', help="path to log into")
parser.add_argument("--checkpoint", default=None, help="path to checkpoint to restore")
parser.add_argument("--device_ids", default="0", type=lambda x: list(map(int, x.split(','))),
help="Names of the devices comma separated.")
parser.add_argument("--verbose", dest="verbose", action="store_true", help="Print model architecture")
parser.set_defaults(verbose=False)
opt = parser.parse_args()
if not torch.cuda.is_available():
opt.device_ids[0] = 'cpu'
with open(opt.config) as f:
config = yaml.load(f)
blocks_discriminator = config['model_params']['discriminator_params']['num_blocks']
assert len(config['train_params']['loss_weights']['reconstruction']) == blocks_discriminator + 1
if opt.checkpoint is not None:
log_dir = os.path.join(*os.path.split(opt.checkpoint)[:-1])
else:
log_dir = os.path.join(opt.log_dir, os.path.basename(opt.config).split('.')[0])
log_dir += ' ' + strftime("%d-%m-%y %H:%M:%S", gmtime())
if not os.path.exists(log_dir):
os.makedirs(log_dir)
if not os.path.exists(os.path.join(log_dir, os.path.basename(opt.config))):
copy(opt.config, log_dir)
generator = MotionTransferGenerator(**config['model_params']['generator_params'],
**config['model_params']['common_params'])
generator.to(opt.device_ids[0])
if opt.verbose:
print(generator)
motion_generator = MotionEmbeddingGenerator(**config['model_params']['motion_generator_params'],
**config['model_params']['common_params'])
motion_generator.to(opt.device_ids[0])
if opt.verbose:
print(motion_generator)
discriminator = Discriminator(**config['model_params']['discriminator_params'],
**config['model_params']['common_params'])
discriminator.to(opt.device_ids[0])
if opt.verbose:
print(discriminator)
kp_detector = KPDetector(**config['model_params']['kp_detector_params'],
**config['model_params']['common_params'])
kp_detector.to(opt.device_ids[0])
if opt.verbose:
print(kp_detector)
dataset = FramesDataset(is_train=('train' in opt.mode), **config['dataset_params'])
if opt.mode == 'train':
print("Training...")
train(config, generator, discriminator, kp_detector, opt.checkpoint, log_dir, dataset, opt.device_ids)
elif opt.mode == 'reconstruction':
print("Reconstruction...")
reconstruction(config, generator, kp_detector, opt.checkpoint, log_dir, dataset)
elif opt.mode == 'transfer':
print("Transfer...")
transfer(config, generator, kp_detector, opt.checkpoint, log_dir, dataset)
elif opt.mode == "prediction":
print("Prediction...")
prediction(config, generator, kp_detector, opt.checkpoint, log_dir)
elif opt.mode == "train_motion_embedding":
print("Train motion embedding from pretrained keypoints ...")
valid_dataset = FramesDataset(is_train=False, **config['dataset_params'])
train_motion_embedding(config, generator, motion_generator, kp_detector, opt.checkpoint, log_dir, dataset, valid_dataset, opt.device_ids)