-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patherror_analysis.m
executable file
·182 lines (99 loc) · 3.3 KB
/
error_analysis.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
%%% ERROR_ANALYSIS
%%% This simulation helps coputing the acturacies of calibration
%%% Run it after the main calibration
N_runs = 200;
%N_ima_active = 4;
saving = 1;
if 1, %~exist('fc_list'), % initialization
% Initialization:
load Calib_Results;
check_active_images;
fc_list = [];
cc_list = [];
kc_list = [];
active_images_list = [];
for kk=1:n_ima,
eval(['omc_list_' num2str(kk) ' = [];']);
eval(['Tc_list_' num2str(kk) ' = [];']);
end;
%sx = median(abs(ex(1,:)))*1.4836;
%sy = median(abs(ex(2,:)))*1.4836;
sx = std(ex(1,:));
sy = std(ex(2,:));
% Saving the feature locations:
for kk = 1:n_ima,
eval(['x_save_' num2str(kk) ' = x_' num2str(kk) ';']);
eval(['y_save_' num2str(kk) ' = y_' num2str(kk) ';']);
end;
active_images_save = active_images;
ind_active_save = ind_active;
fc_save = fc;
cc_save = cc;
kc_save = kc;
KK_save = KK;
end;
%%% The main loop:
for ntrial = 1:N_runs,
fprintf(1,'\nRun number: %d\n',ntrial);
fprintf(1, '----------\n');
for kk = 1:n_ima,
eval(['y_kk = y_save_' num2str(kk) ';'])
if active_images(kk) & ~isnan(y_kk(1,1)),
Nkk = size(y_kk,2);
x_kk_new = y_kk + [sx * randn(1,Nkk);sy*randn(1,Nkk)];
eval(['x_' num2str(kk) ' = x_kk_new;']);
end;
end;
N_active = length(ind_active_save);
junk = randn(1,N_active);
[junk,junk2] = sort(junk);
active_images = zeros(1,n_ima);
active_images(ind_active_save(junk2(1:N_ima_active))) = ones(1,N_ima_active);
fc = fc_save;
cc = cc_save;
kc = kc_save;
KK = KK_save;
go_calib_optim;
fc_list = [fc_list fc];
cc_list = [cc_list cc];
kc_list = [kc_list kc];
active_images_list = [active_images_list active_images'];
for kk=1:n_ima,
eval(['omc_list_' num2str(kk) ' = [ omc_list_' num2str(kk) ' omc_' num2str(kk) ' ];']);
eval(['Tc_list_' num2str(kk) ' = [ Tc_list_' num2str(kk) ' Tc_' num2str(kk) ' ];']);
end;
end;
if 0,
% Restoring the feature locations:
for kk = 1:n_ima,
eval(['x_' num2str(kk) ' = x_save_' num2str(kk) ';']);
end;
fprintf(1,'\nFinal run (with the real data)\n');
fprintf(1, '------------------------------\n');
active_images = active_images_save;
ind_active = ind_active_save;
go_calib_optim;
fc_list = [fc_list fc];
cc_list = [cc_list cc];
kc_list = [kc_list kc];
active_images_list = [active_images_list active_images'];
for kk=1:n_ima,
eval(['omc_list_' num2str(kk) ' = [ omc_list_' num2str(kk) ' omc_' num2str(kk) ' ];']);
eval(['Tc_list_' num2str(kk) ' = [ Tc_list_' num2str(kk) ' Tc_' num2str(kk) ' ];']);
end;
end;
if saving,
disp(['Save Calibration accuracy results under Calib_Accuracies_' num2str(N_ima_active) '.mat']);
string_save = ['save Calib_Accuracies_' num2str(N_ima_active) ' active_images n_ima N_ima_active N_runs active_images_list fc cc kc fc_list cc_list kc_list'];
for kk = 1:n_ima,
string_save = [string_save ' Tc_list_' num2str(kk) ' omc_list_' num2str(kk) ' Tc_' num2str(kk) ' omc_' num2str(kk) ];
end;
eval(string_save);
end;
return;
std(fc_list')
std(cc_list')
std(kc_list')
for kk = 1:n_ima,
eval(['std(Tc_list_' num2str(kk) ''')'])
end;