-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcornerfinder2.m
executable file
·223 lines (150 loc) · 4.85 KB
/
cornerfinder2.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
function [xc,good,bad,type] = cornerfinder2(xt,I,wintx,winty,wx2,wy2);
%[xc] = cornerfinder(xt,I);
%
%Finds the sub-pixel corners on the image I with initial guess xt
%xt and xc are 2xN matrices. The first component is the x coordinate
%(horizontal) and the second component is the y coordinate (vertical)
%
%Based on Harris corner finder method
%
%Finds corners to a precision below .1 pixel!
%Oct. 14th, 1997 - UPDATED to work with vertical and horizontal edges as well!!!
%Sept 1998 - UPDATED to handle diverged points: we keep the original points
%good is a binary vector indicating wether a feature point has been properly
%found.
%
%Add a zero zone of size wx2,wy2
%July 15th, 1999 - Bug on the mask building... fixed + change to Gaussian mask with higher
%resolution and larger number of iterations.
% California Institute of Technology
% (c) Jean-Yves Bouguet -- Oct. 14th, 1997
line_feat = 1; % set to 1 to allow for extraction of line features.
xt = xt';
xt = fliplr(xt);
if nargin < 4,
winty = 5;
if nargin < 3,
wintx = 5;
end;
end;
if nargin < 6,
wx2 = -1;
wy2 = -1;
end;
%mask = ones(2*wintx+1,2*winty+1);
mask = exp(-((-wintx:wintx)'/(wintx)).^2) * exp(-((-winty:winty)/(winty)).^2);
% another mask:
[X,Y] = meshgrid(-winty:winty,-wintx:wintx);
mask2 = X.^2 + Y.^2;
mask2(wintx+1,winty+1) = 1;
mask2 = 1./mask2;
%mask - mask2;
if (wx2>0) & (wy2>0),
if ((wintx - wx2)>=2)&((winty - wy2)>=2),
mask(wintx+1-wx2:wintx+1+wx2,winty+1-wy2:winty+1+wy2)= zeros(2*wx2+1,2*wy2+1);
end;
end;
offx = [-wintx:wintx]'*ones(1,2*winty+1);
offy = ones(2*wintx+1,1)*[-winty:winty];
resolution = 0.005;
MaxIter = 10;
[nx,ny] = size(I);
N = size(xt,1);
xc = xt; % first guess... they don't move !!!
type = zeros(1,N);
for i=1:N,
v_extra = resolution + 1; % just larger than resolution
compt = 0; % no iteration yet
while (norm(v_extra) > resolution) & (compt<MaxIter),
cIx = xc(i,1); %
cIy = xc(i,2); % Coords. of the point
crIx = round(cIx); % on the initial image
crIy = round(cIy); %
itIx = cIx - crIx; % Coefficients
itIy = cIy - crIy; % to compute
if itIx > 0, % the sub pixel
vIx = [itIx 1-itIx 0]'; % accuracy.
else
vIx = [0 1+itIx -itIx]';
end;
if itIy > 0,
vIy = [itIy 1-itIy 0];
else
vIy = [0 1+itIy -itIy];
end;
% What if the sub image is not in?
if (crIx-wintx-2 < 1), xmin=1; xmax = 2*wintx+5;
elseif (crIx+wintx+2 > nx), xmax = nx; xmin = nx-2*wintx-4;
else
xmin = crIx-wintx-2; xmax = crIx+wintx+2;
end;
if (crIy-winty-2 < 1), ymin=1; ymax = 2*winty+5;
elseif (crIy+winty+2 > ny), ymax = ny; ymin = ny-2*winty-4;
else
ymin = crIy-winty-2; ymax = crIy+winty+2;
end;
SI = I(xmin:xmax,ymin:ymax); % The necessary neighborhood
SI = conv2(conv2(SI,vIx,'same'),vIy,'same');
SI = SI(2:2*wintx+4,2:2*winty+4); % The subpixel interpolated neighborhood
[gy,gx] = gradient(SI); % The gradient image
gx = gx(2:2*wintx+2,2:2*winty+2); % extraction of the useful parts only
gy = gy(2:2*wintx+2,2:2*winty+2); % of the gradients
px = cIx + offx;
py = cIy + offy;
gxx = gx .* gx .* mask;
gyy = gy .* gy .* mask;
gxy = gx .* gy .* mask;
bb = [sum(sum(gxx .* px + gxy .* py)); sum(sum(gxy .* px + gyy .* py))];
a = sum(sum(gxx));
b = sum(sum(gxy));
c = sum(sum(gyy));
dt = a*c - b^2;
xc2 = [c*bb(1)-b*bb(2) a*bb(2)-b*bb(1)]/dt;
%keyboard;
if line_feat,
G = [a b;b c];
[U,S,V] = svd(G);
%keyboard;
% If non-invertible, then project the point onto the edge orthogonal:
if (S(1,1)/S(2,2) > 50),
% projection operation:
xc2 = xc2 + sum((xc(i,:)-xc2).*(V(:,2)'))*V(:,2)';
type(i) = 1;
end;
end;
%keyboard;
% G = [a b;b c];
% [U,S,V] = svd(G);
% if S(1,1)/S(2,2) > 150,
% bb2 = U'*bb;
% xc2 = (V*[bb2(1)/S(1,1) ;0])';
% else
% xc2 = [c*bb(1)-b*bb(2) a*bb(2)-b*bb(1)]/dt;
% end;
%if (abs(a)> 50*abs(c)),
% xc2 = [(c*bb(1)-b*bb(2))/dt xc(i,2)];
% elseif (abs(c)> 50*abs(a))
% xc2 = [xc(i,1) (a*bb(2)-b*bb(1))/dt];
% else
% xc2 = [c*bb(1)-b*bb(2) a*bb(2)-b*bb(1)]/dt;
% end;
%keyboard;
v_extra = xc(i,:) - xc2;
xc(i,:) = xc2;
% keyboard;
compt = compt + 1;
end
end;
% check for points that diverge:
delta_x = xc(:,1) - xt(:,1);
delta_y = xc(:,2) - xt(:,2);
%keyboard;
bad = (abs(delta_x) > wintx) | (abs(delta_y) > winty);
good = ~bad;
in_bad = find(bad);
% For the diverged points, keep the original guesses:
xc(in_bad,:) = xt(in_bad,:);
xc = fliplr(xc);
xc = xc';
bad = bad';
good = good';