-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDistor2Calib.m
executable file
·391 lines (242 loc) · 8.27 KB
/
Distor2Calib.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
function [fc_2,Rc_2,Tc_2,H_2,distance,V_vert,V_hori,x_all_c,V_hori_pix,V_vert_pix,V_diag1_pix,V_diag2_pix]=Distor2Calib(k_dist,grid_pts_centered,n_sq_x,n_sq_y,Np,W,L,Xgrid_2,f_ini,N_iter,two_focal);
% Computes the calibration parameters knowing the
% distortion factor k_dist
% grid_pts_centered are the grid point coordinates after substraction of
% the optical center.
% can give an optional guess for the focal length f_ini (can set to [])
% can provide the number of iterations for the Iterative Vanishing Point Algorithm
% if the focal length is known perfectly, then, there is no need to iterate,
% and therefore, one can fix: N_iter = 0;
% California Institute of Technology
% (c) Jean-Yves Bouguet - October 7th, 1997
%keyboard;
if exist('two_focal'),
if isempty(two_focal),
two_focal=0;
end;
else
two_focal = 0;
end;
if exist('N_iter'),
if ~isempty(N_iter),
disp('Use number of iterations provided');
else
N_iter = 10;
end;
else
N_iter = 10;
end;
if exist('f_ini'),
if ~isempty(f_ini),
disp('Use focal provided');
if length(f_ini)<2, f_ini=[f_ini;f_ini]; end;
fc_2 = f_ini;
x_all_c = [grid_pts_centered(1,:)/fc_2(1);grid_pts_centered(2,:)/fc_2(2)];
x_all_c = comp_distortion(x_all_c,k_dist); % we can this time!!!
else
fc_2 = [1;1];
x_all_c = grid_pts_centered;
end;
else
fc_2 = [1;1];
x_all_c = grid_pts_centered;
end;
dX = W/n_sq_x;
dY = L/n_sq_y;
N_x = n_sq_x+1;
N_y = n_sq_y+1;
x_grid = zeros(N_x,N_y);
y_grid = zeros(N_x,N_y);
%%% Computation of the four vanishing points in pixels
x_grid(:) = grid_pts_centered(1,:);
y_grid(:) = grid_pts_centered(2,:);
for k=1:n_sq_x+1,
[U,S,V] = svd([x_grid(k,:);y_grid(k,:);ones(1,n_sq_y+1)]);
vert(:,k) = U(:,3);
end;
for k=1:n_sq_y+1,
[U,S,V] = svd([x_grid(:,k)';y_grid(:,k)';ones(1,n_sq_x+1)]);
hori(:,k) = U(:,3);
end;
% 2 principle Vanishing points:
[U,S,V] = svd(vert);
V_vert = U(:,3);
[U,S,V] = svd(hori);
V_hori = U(:,3);
% Square warping:
vert_first = vert(:,1) - dot(V_vert,vert(:,1))/dot(V_vert,V_vert) * V_vert;
vert_last = vert(:,n_sq_x+1) - dot(V_vert,vert(:,n_sq_x+1))/dot(V_vert,V_vert) * V_vert;
hori_first = hori(:,1) - dot(V_hori,hori(:,1))/dot(V_hori,V_hori) * V_hori;
hori_last = hori(:,n_sq_y+1) - dot(V_hori,hori(:,n_sq_y+1))/dot(V_hori,V_hori) * V_hori;
x1 = cross(hori_first,vert_first);
x2 = cross(hori_first,vert_last);
x3 = cross(hori_last,vert_last);
x4 = cross(hori_last,vert_first);
x1 = x1/x1(3);
x2 = x2/x2(3);
x3 = x3/x3(3);
x4 = x4/x4(3);
[square] = Rectangle2Square([x1 x2 x3 x4],W,L);
y1 = square(:,1);
y2 = square(:,2);
y3 = square(:,3);
y4 = square(:,4);
H2 = cross(V_vert,V_hori);
V_diag1 = cross(cross(y1,y3),H2);
V_diag2 = cross(cross(y2,y4),H2);
V_diag1 = V_diag1 / norm(V_diag1);
V_diag2 = V_diag2 / norm(V_diag2);
V_hori_pix = V_hori;
V_vert_pix = V_vert;
V_diag1_pix = V_diag1;
V_diag2_pix = V_diag2;
% end of computation of the vanishing points in pixels.
if two_focal, % only if we attempt to estimate two focals...
% Use diagonal lines also to add two extra vanishing points (?)
N_min = min(N_x,N_y);
if N_min < 2,
use_diag = 0;
two_focal = 0;
disp('Cannot estimate two focals (no existing diagonals)');
else
use_diag = 1;
Delta_N = abs(N_x-N_y);
N_extra = round((N_min - Delta_N - 1)/2);
diag_list = -N_extra:Delta_N+N_extra;
N_diag = length(diag_list);
diag_1 = zeros(3,N_diag);
diag_2 = zeros(3,N_diag);
end;
else
% Give up the use of the diagonals (so far)
% it seems that the error is increased
use_diag = 0;
end;
% The vertical lines: vert, Horizontal lines: hori
vert = zeros(3,n_sq_x+1);
hori = zeros(3,n_sq_y+1);
for counter_k = 1:N_iter, % the Iterative Vanishing Points Algorithm to
% estimate the focal length accurately
x_grid(:) = x_all_c(1,:);
y_grid(:) = x_all_c(2,:);
for k=1:n_sq_x+1,
[U,S,V] = svd([x_grid(k,:);y_grid(k,:);ones(1,n_sq_y+1)]);
vert(:,k) = U(:,3);
end;
for k=1:n_sq_y+1,
[U,S,V] = svd([x_grid(:,k)';y_grid(:,k)';ones(1,n_sq_x+1)]);
hori(:,k) = U(:,3);
end;
% 2 principle Vanishing points:
[U,S,V] = svd(vert);
V_vert = U(:,3);
[U,S,V] = svd(hori);
V_hori = U(:,3);
% Square warping:
vert_first = vert(:,1) - dot(V_vert,vert(:,1))/dot(V_vert,V_vert) * V_vert;
vert_last = vert(:,n_sq_x+1) - dot(V_vert,vert(:,n_sq_x+1))/dot(V_vert,V_vert) * V_vert;
hori_first = hori(:,1) - dot(V_hori,hori(:,1))/dot(V_hori,V_hori) * V_hori;
hori_last = hori(:,n_sq_y+1) - dot(V_hori,hori(:,n_sq_y+1))/dot(V_hori,V_hori) * V_hori;
x1 = cross(hori_first,vert_first);
x2 = cross(hori_first,vert_last);
x3 = cross(hori_last,vert_last);
x4 = cross(hori_last,vert_first);
x1 = x1/x1(3);
x2 = x2/x2(3);
x3 = x3/x3(3);
x4 = x4/x4(3);
[square] = Rectangle2Square([x1 x2 x3 x4],W,L);
y1 = square(:,1);
y2 = square(:,2);
y3 = square(:,3);
y4 = square(:,4);
H2 = cross(V_vert,V_hori);
V_diag1 = cross(cross(y1,y3),H2);
V_diag2 = cross(cross(y2,y4),H2);
V_diag1 = V_diag1 / norm(V_diag1);
V_diag2 = V_diag2 / norm(V_diag2);
% Estimation of the focal length, and normalization:
% Compute the ellipsis of (1/f^2) positions:
% a * (1/fx)^2 + b * (1/fx)^2 = -c
a1 = V_hori(1);
b1 = V_hori(2);
c1 = V_hori(3);
a2 = V_vert(1);
b2 = V_vert(2);
c2 = V_vert(3);
a3 = V_diag1(1);
b3 = V_diag1(2);
c3 = V_diag1(3);
a4 = V_diag2(1);
b4 = V_diag2(2);
c4 = V_diag2(3);
if two_focal,
A = [a1*a2 b1*b2;a3*a4 b3*b4];
b = -[c1*c2;c3*c4];
f = sqrt(abs(1./(inv(A)*b)));
else
f = sqrt(abs(-(c1*c2*(a1*a2 + b1*b2) + c3*c4*(a3*a4 + b3*b4))/(c1^2*c2^2 + c3^2*c4^2)));
f = [f;f];
end;
% REMARK:
% if both a and b are small, the calibration is impossible.
% if one of them is small, only the other focal length is observable
% if none is small, both focals are observable
fc_2 = fc_2 .* f;
% DEBUG PART: fix focal to 500...
%fc_2= [500;500]; disp('Line 293 to be earased in Distor2Calib.m');
% end of focal compensation
% normalize by the current focal:
x_all = [grid_pts_centered(1,:)/fc_2(1);grid_pts_centered(2,:)/fc_2(2)];
% Compensate by the distortion factor:
x_all_c = comp_distortion(x_all,k_dist);
end;
% At that point, we hope that the distortion is gone...
x_grid(:) = x_all_c(1,:);
y_grid(:) = x_all_c(2,:);
for k=1:n_sq_x+1,
[U,S,V] = svd([x_grid(k,:);y_grid(k,:);ones(1,n_sq_y+1)]);
vert(:,k) = U(:,3);
end;
for k=1:n_sq_y+1,
[U,S,V] = svd([x_grid(:,k)';y_grid(:,k)';ones(1,n_sq_x+1)]);
hori(:,k) = U(:,3);
end;
% Vanishing points:
[U,S,V] = svd(vert);
V_vert = U(:,3);
[U,S,V] = svd(hori);
V_hori = U(:,3);
% Horizon:
H_2 = cross(V_vert,V_hori);
% H_2 = cross(V_vert,V_hori);
% pick a plane in front of the camera (positive depth)
if H_2(3) < 0, H_2 = -H_2; end;
% Rotation matrix:
if V_hori(1) < 0, V_hori = -V_hori; end;
V_hori = V_hori/norm(V_hori);
H_2 = H_2/norm(H_2);
V_hori = V_hori - dot(V_hori,H_2)*H_2;
Rc_2 = [V_hori cross(H_2,V_hori) H_2];
Rc_2 = Rc_2 / det(Rc_2);
%omc_2 = rodrigues(Rc_2);
%Rc_2 = rodrigues(omc_2);
% Find the distance of the plane for translation vector:
xc_2 = [x_all_c;ones(1,Np)];
Zc_2 = 1./sum(xc_2 .* (Rc_2(:,3)*ones(1,Np)));
Xo_2 = [sum(xc_2 .* (Rc_2(:,1)*ones(1,Np))).*Zc_2 ; sum(xc_2 .* (Rc_2(:,2)*ones(1,Np))).*Zc_2];
XXo_2 = Xo_2 - mean(Xo_2')'*ones(1,Np);
distance_x = norm(Xgrid_2(1,:))/norm(XXo_2(1,:));
distance_y = norm(Xgrid_2(2,:))/norm(XXo_2(2,:));
distance = sum(sum(XXo_2(1:2,:).*Xgrid_2(1:2,:)))/sum(sum(XXo_2(1:2,:).^2));
alpha = abs(distance_x - distance_y)/distance;
if (alpha>0.1)&~two_focal,
disp('Should use two focals in x and y...');
end;
% Deduce the translation vector:
Tc_2 = distance * H_2;
return;
V_hori_pix/V_hori_pix(3)
V_vert_pix/V_vert_pix(3)
V_diag1_pix/V_diag1_pix(3)
V_diag2_pix/V_diag2_pix(3)