-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathprodigy_Infotech_task3.py
69 lines (54 loc) · 1.93 KB
/
prodigy_Infotech_task3.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
import matplotlib.pyplot as plt
import numpy as np # linear algebra
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import os
for dirname, _, filenames in os.walk('/content/sampleSubmission.csv'):
for filename in filenames:
print(os.path.join(dirname, filename))
data_set = "dogs-vs-cats"
import zipfile
with zipfile.ZipFile("/kaggle/input/"+ data_set +"/train.zip","r") as z:
z.extractall(".")
# save all files to kaggle/files/images
destination = '/kaggle/files/images'
z.extractall(destination)
data_ = pd.DataFrame({'file': os.listdir('/kaggle/files/images/train')})
Y=[]
for i in os.listdir('/kaggle/files/images/train'):
if 'dog' in i:
Y.append(1)
else:
Y.append(0)
data_['class'] = Y
file = data_['file']
Y = data_['class']
import matplotlib.image as mpimg
from skimage.feature import hog
from skimage import data, exposure
from skimage.transform import rescale, resize
data_size = 1200
ptr=0
X = []
for i in file:
img = mpimg.imread('/kaggle/files/images/train/' + i)
resized_img = resize(img, (128, 64))
fd, hog_image = hog(resized_img, orientations=9, pixels_per_cell=(8, 8),cells_per_block=(2, 2), visualize=True, multichannel = True)
X.append(fd)
ptr = ptr+1
if(ptr >= data_size):
break
Y = Y[:data_size]
# dividing X, y into train and test data
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, Y, random_state=0)
c = 1
from sklearn.svm import LinearSVC
svm_LinearSVC = LinearSVC(C=c).fit(X_train, y_train)
from sklearn.svm import SVC
svm_svc = SVC(kernel='linear', C=c).fit(X_train, y_train)
accuracy = svm_LinearSVC.score(X_test, y_test)
print('svm_LinearSVC accuracy:', str(accuracy))
#svm_svc accuracy
accuracy = svm_svc.score(X_test, y_test)
print('svm_svc accuracy:', str(accuracy))
print("c = ", c)