Skip to content

Latest commit

 

History

History
61 lines (38 loc) · 1.72 KB

README.md

File metadata and controls

61 lines (38 loc) · 1.72 KB

U-Net: Semantic segmentation with PyTorch - Custom dataset

Offline Dataset preprocessing

Make sure the data you have satisfies following conditions

  • Directory tree
   - Data
          -- imgs
                  -- all train images
          -- masks 
                  -- all masks (file names should be same as train images)
  • Size and color space
    • Make sure you have same size images
    • Make sure you have RGB color space for all images
    • if you need you can use ```utils\resize_and_img_format.py`` file
  • Mask values (I have tested only for these values it might also work for multi labels but you need to adjust the classes)
    • Make sure mask values are only two i.e either 0 or 255
    • if you need you can use utils\\convert_to_binary.py file

Flood Area dataset

I have used all the offline dataset preprocessing for this kaggle dataset

  • data.zip holds the preprocessed images
  • unzip data.zip

Installation

  • pip install -r requirements

Training

  • python train.py --epochs 100 --batch-size 16

Prediction

  • Visuvalize - python predict.py --model ./checkpoints/checkpoint_epoch100.pth -i ./data/imgs/0.jpg --viz --output ./0_OUT.jpg

  • You can use utils/blending.py to create blended image

Image and mask

Blended Segmentation :

Colab NoteBook

Credits