-
Notifications
You must be signed in to change notification settings - Fork 1
/
schedulers.py
59 lines (45 loc) · 1.88 KB
/
schedulers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
import math
from torch.optim import lr_scheduler
class WarmRestart(lr_scheduler.CosineAnnealingLR):
"""This class implements Stochastic Gradient Descent with Warm Restarts(SGDR): https://arxiv.org/abs/1608.03983.
Set the learning rate of each parameter group using a cosine annealing schedule, When last_epoch=-1, sets initial lr as lr.
This can't support scheduler.step(epoch). please keep epoch=None.
"""
def __init__(self, optimizer, T_max=30, T_mult=1, eta_min=0, last_epoch=-1):
"""implements SGDR
Parameters:
----------
T_max : int
Maximum number of epochs.
T_mult : int
Multiplicative factor of T_max.
eta_min : int
Minimum learning rate. Default: 0.
last_epoch : int
The index of last epoch. Default: -1.
"""
self.T_mult = T_mult
super().__init__(optimizer, T_max, eta_min, last_epoch)
def get_lr(self):
if self.last_epoch == self.T_max:
self.last_epoch = 0
self.T_max *= self.T_mult
return [self.eta_min + (base_lr - self.eta_min) * (1 + math.cos(math.pi * self.last_epoch / self.T_max)) / 2 for
base_lr in self.base_lrs]
class LinearDecay(lr_scheduler._LRScheduler):
"""This class implements LinearDecay
"""
def __init__(self, optimizer, num_epochs, start_epoch=0, min_lr=0, last_epoch=-1):
"""implements LinearDecay
Parameters:
----------
"""
self.num_epochs = num_epochs
self.start_epoch = start_epoch
self.min_lr = min_lr
super().__init__(optimizer, last_epoch)
def get_lr(self):
if self.last_epoch < self.start_epoch:
return self.base_lrs
return [base_lr - ((base_lr - self.min_lr) / self.num_epochs) * (self.last_epoch - self.start_epoch) for
base_lr in self.base_lrs]