forked from wang-xinyu/tensorrtx
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathPredictorDecodePlugin.h
executable file
·223 lines (182 loc) · 7.5 KB
/
PredictorDecodePlugin.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
#pragma once
#include <NvInfer.h>
#include <cassert>
#include <vector>
#include "macros.h"
using namespace nvinfer1;
#define PLUGIN_NAME "PredictorDecode"
#define PLUGIN_VERSION "1"
#define PLUGIN_NAMESPACE ""
namespace nvinfer1 {
int predictorDecode(int batchSize,
const void *const *inputs, void *TRT_CONST_ENQUEUE*outputs, unsigned int num_boxes,
unsigned int num_classes, unsigned int image_height,
unsigned int image_width, const std::vector<float>& bbox_reg_weights,
void *workspace, size_t workspace_size, cudaStream_t stream);
/*
input1: scores{N,C,1,1} N->nums C->num of classes
input2: boxes{N,C*4,1,1} N->nums C->num of classes
input3: proposals{N,4} N->nums
output1: scores{N, 1} N->nums
output2: boxes{N, 4} N->nums format:XYXY
output3: classes{N, 1} N->nums
Description: implement fast rcnn decode
*/
class PredictorDecodePlugin : public IPluginV2Ext {
unsigned int _num_boxes;
unsigned int _num_classes;
unsigned int _image_height;
unsigned int _image_width;
std::vector<float> _bbox_reg_weights;
mutable int size = -1;
protected:
void deserialize(void const* data, size_t length) {
const char* d = static_cast<const char*>(data);
read(d, _num_boxes);
read(d, _num_classes);
read(d, _image_height);
read(d, _image_width);
size_t bbox_reg_weights_size;
read(d, bbox_reg_weights_size);
while (bbox_reg_weights_size--) {
float val;
read(d, val);
_bbox_reg_weights.push_back(val);
}
}
size_t getSerializationSize() const TRT_NOEXCEPT override {
return sizeof(_num_boxes) + sizeof(_num_classes) +
sizeof(_image_height) + sizeof(_image_width) + sizeof(size_t) +
sizeof(float)*_bbox_reg_weights.size();
}
void serialize(void *buffer) const TRT_NOEXCEPT override {
char* d = static_cast<char*>(buffer);
write(d, _num_boxes);
write(d, _num_classes);
write(d, _image_height);
write(d, _image_width);
write(d, _bbox_reg_weights.size());
for (auto &val : _bbox_reg_weights) {
write(d, val);
}
}
public:
PredictorDecodePlugin(unsigned int num_boxes, unsigned int image_height,
unsigned int image_width, std::vector<float> const& bbox_reg_weights)
: _num_boxes(num_boxes), _image_height(image_height),
_image_width(image_width), _bbox_reg_weights(bbox_reg_weights) {}
PredictorDecodePlugin(unsigned int num_boxes, unsigned int num_classes,
unsigned int image_height, unsigned int image_width,
std::vector<float> const& bbox_reg_weights)
: _num_boxes(num_boxes), _num_classes(num_classes),
_image_height(image_height), _image_width(image_width),
_bbox_reg_weights(bbox_reg_weights) {}
PredictorDecodePlugin(void const* data, size_t length) {
this->deserialize(data, length);
}
const char *getPluginType() const TRT_NOEXCEPT override {
return PLUGIN_NAME;
}
const char *getPluginVersion() const TRT_NOEXCEPT override {
return PLUGIN_VERSION;
}
int getNbOutputs() const TRT_NOEXCEPT override {
return 3;
}
Dims getOutputDimensions(int index,
const Dims *inputs, int nbInputDims) TRT_NOEXCEPT override {
assert(nbInputDims == 3);
assert(index < this->getNbOutputs());
return Dims2(_num_boxes, (index == 1 ? 4 : 1));
}
bool supportsFormat(DataType type, PluginFormat format) const TRT_NOEXCEPT override {
return type == DataType::kFLOAT && format == PluginFormat::kLINEAR;
}
int initialize() TRT_NOEXCEPT override { return 0; }
void terminate() TRT_NOEXCEPT override {}
size_t getWorkspaceSize(int maxBatchSize) const TRT_NOEXCEPT override {
if (size < 0) {
size = predictorDecode(maxBatchSize, nullptr, nullptr,
_num_boxes, _num_classes, _image_height, _image_width,
_bbox_reg_weights, nullptr, 0, nullptr);
}
return size;
}
int enqueue(int batchSize,
const void *const *inputs, void *TRT_CONST_ENQUEUE*outputs,
void *workspace, cudaStream_t stream) TRT_NOEXCEPT override {
return predictorDecode(batchSize, inputs, outputs, _num_boxes,
_num_classes, _image_height, _image_width, _bbox_reg_weights,
workspace, getWorkspaceSize(batchSize), stream);
}
void destroy() TRT_NOEXCEPT override {
delete this;
};
const char *getPluginNamespace() const TRT_NOEXCEPT override {
return PLUGIN_NAMESPACE;
}
void setPluginNamespace(const char *N) TRT_NOEXCEPT override {}
// IPluginV2Ext Methods
DataType getOutputDataType(int index, const DataType* inputTypes, int nbInputs) const TRT_NOEXCEPT override {
assert(index < this->getNbOutputs());
return DataType::kFLOAT;
}
bool isOutputBroadcastAcrossBatch(int outputIndex, const bool* inputIsBroadcasted,
int nbInputs) const TRT_NOEXCEPT override {
return false;
}
bool canBroadcastInputAcrossBatch(int inputIndex) const TRT_NOEXCEPT override { return false; }
void configurePlugin(const Dims* inputDims, int nbInputs, const Dims* outputDims, int nbOutputs,
const DataType* inputTypes, const DataType* outputTypes, const bool* inputIsBroadcast,
const bool* outputIsBroadcast, PluginFormat floatFormat, int maxBatchSize) TRT_NOEXCEPT override {
assert(*inputTypes == nvinfer1::DataType::kFLOAT &&
floatFormat == nvinfer1::PluginFormat::kLINEAR);
assert(nbInputs == 3);
assert(nbOutputs == 3);
auto const& scores_dims = inputDims[0];
auto const& boxes_dims = inputDims[1];
auto const& proposals_dims = inputDims[2];
assert(scores_dims.d[0] == _num_boxes);
assert(scores_dims.d[0] == boxes_dims.d[0]);
assert(scores_dims.d[0] == proposals_dims.d[0]);
assert(scores_dims.d[1] * 4 == boxes_dims.d[1]);
assert(proposals_dims.d[1] == 4);
_num_classes = scores_dims.d[1];
}
IPluginV2Ext *clone() const TRT_NOEXCEPT override {
return new PredictorDecodePlugin(_num_boxes, _num_classes, _image_height, _image_width, _bbox_reg_weights);
}
private:
template<typename T> void write(char*& buffer, const T& val) const {
*reinterpret_cast<T*>(buffer) = val;
buffer += sizeof(T);
}
template<typename T> void read(const char*& buffer, T& val) {
val = *reinterpret_cast<const T*>(buffer);
buffer += sizeof(T);
}
};
class PredictorDecodePluginCreator : public IPluginCreator {
public:
PredictorDecodePluginCreator() {}
const char *getPluginName() const TRT_NOEXCEPT override {
return PLUGIN_NAME;
}
const char *getPluginVersion() const TRT_NOEXCEPT override {
return PLUGIN_VERSION;
}
const char *getPluginNamespace() const TRT_NOEXCEPT override {
return PLUGIN_NAMESPACE;
}
IPluginV2 *deserializePlugin(const char *name, const void *serialData, size_t serialLength) TRT_NOEXCEPT override {
return new PredictorDecodePlugin(serialData, serialLength);
}
void setPluginNamespace(const char *N) TRT_NOEXCEPT override {}
const PluginFieldCollection *getFieldNames() TRT_NOEXCEPT override { return nullptr; }
IPluginV2 *createPlugin(const char *name, const PluginFieldCollection *fc) TRT_NOEXCEPT override { return nullptr; }
};
REGISTER_TENSORRT_PLUGIN(PredictorDecodePluginCreator);
} // namespace nvinfer1
#undef PLUGIN_NAME
#undef PLUGIN_VERSION
#undef PLUGIN_NAMESPACE