Skip to content

Latest commit

 

History

History
10 lines (10 loc) · 628 Bytes

File metadata and controls

10 lines (10 loc) · 628 Bytes

Consider a symbol vocabulary that contains $c$ constant symbols, $p_k$ predicate symbols of each arity $k$, and $f_k$ function symbols of each arity $k$, where $1\leq k\leq A$. Let the domain size be fixed at $D$. For any given model, each predicate or function symbol is mapped onto a relation or function, respectively, of the same arity. You may assume that the functions in the model allow some input tuples to have no value for the function (i.e., the value is the invisible object). Derive a formula for the number of possible models for a domain with $D$ elements. Don’t worry about eliminating redundant combinations.