This exercise investigates the way in which conditional independence
relationships affect the amount of information needed for probabilistic
calculations.
-
Suppose we wish to calculate
$P(h{{,|,}}e_1,e_2)$ and we have no conditional independence information. Which of the following sets of numbers are sufficient for the calculation?-
${\textbf{P}}(E_1,E_2)$ ,${\textbf{P}}(H)$ ,${\textbf{P}}(E_1{{,|,}}H)$ ,${\textbf{P}}(E_2{{,|,}}H)$ -
${\textbf{P}}(E_1,E_2)$ ,${\textbf{P}}(H)$ ,${\textbf{P}}(E_1,E_2{{,|,}}H)$ -
${\textbf{P}}(H)$ ,${\textbf{P}}(E_1{{,|,}}H)$ ,${\textbf{P}}(E_2{{,|,}}H)$
-
-
Suppose we know that
${\textbf{P}}(E_1{{,|,}}H,E_2)={\textbf{P}}(E_1{{,|,}}H)$ for all values of$H$ ,$E_1$ ,$E_2$ . Now which of the three sets are sufficient?