Skip to content

Latest commit

 

History

History
30 lines (19 loc) · 722 Bytes

README.md

File metadata and controls

30 lines (19 loc) · 722 Bytes

RWKV-CUDA

The CUDA version of the RWKV language model ( https://github.com/BlinkDL/RWKV-LM )

Experiment 1 - depthwise_conv1d - 20x faster than pytorch

The formula:

w.shape = (C, T)
k.shape = (B, C, T)
out.shape = (B, C, T)
out[b][c][t] = sum_u{ w[c][(T-1)-(t-u)] * k[b][c][u] }

pytorch = fwd 94ms bwd 529ms

CUDA kernel v0 = fwd 45ms bwd 84ms (simple)

CUDA kernel v1 = fwd 17ms bwd 43ms (shared memory)

CUDA kernel v2 = fwd 13ms bwd 31ms (float4)

CUDA kernel v3 = fwd 3.4ms bwd 23ms (B-group)

More test on RTX3090:

pytorch = fwd 14ms bwd 65ms

CUDA kernel v3 = fwd 0.8ms bwd 5.5ms

How to use: python run.py and it will compile everything for you (pip install Ninja if you don't have it).