-
Notifications
You must be signed in to change notification settings - Fork 477
/
Copy pathembed_bigram_lstm.py
344 lines (286 loc) · 14.1 KB
/
embed_bigram_lstm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
# coding=utf-8
import random
import string
import zipfile
import numpy as np
import tensorflow as tf
from not_mnist.img_pickle import save_obj, load_pickle
from not_mnist.load_data import maybe_download
def read_data(filename):
f = zipfile.ZipFile(filename)
for name in f.namelist():
return tf.compat.as_str(f.read(name))
f.close()
data_set = load_pickle('text8_text.pickle')
if data_set is None:
# load data
url = 'http://mattmahoney.net/dc/'
filename = maybe_download('text8.zip', 31344016, url=url)
# read data
text = read_data(filename)
print('Data size %d' % len(text))
save_obj('text8_text.pickle', text)
else:
text = data_set
# Create a small validation set.
valid_size = 1000
valid_text = text[:valid_size]
train_text = text[valid_size:]
train_size = len(train_text)
print(train_size, train_text[:64])
print(valid_size, valid_text[:64])
# Utility functions to map characters to vocabulary IDs and back.
vocabulary_size = len(string.ascii_lowercase) + 1 # [a-z] + ' '
# ascii code for character
first_letter = ord(string.ascii_lowercase[0])
def char2id(char):
if char in string.ascii_lowercase:
return ord(char) - first_letter + 1
elif char == ' ':
return 0
else:
print('Unexpected character: %s' % char)
return 0
def id2char(dictid):
if dictid > 0:
return chr(dictid + first_letter - 1)
else:
return ' '
print(char2id('a'), char2id('z'), char2id(' '), char2id('ï'))
print(id2char(1), id2char(26), id2char(0))
bi_voc_size = vocabulary_size * vocabulary_size
class BiBatchGenerator(object):
def __init__(self, text, batch_size, num_unrollings):
self._text = text
self._text_size_in_chars = len(text)
self._text_size = self._text_size_in_chars // 2 # in bigrams
self._batch_size = batch_size
self._num_unrollings = num_unrollings
segment = self._text_size // batch_size
self._cursor = [offset * segment for offset in range(batch_size)]
self._last_batch = self._next_batch()
def _next_batch(self):
batch = np.zeros(shape=self._batch_size, dtype=np.int)
# print 'batch idx %i' %
for b in range(self._batch_size):
char_idx = self._cursor[b] * 2
ch1 = char2id(self._text[char_idx])
if self._text_size_in_chars - 1 == char_idx:
ch2 = 0
else:
ch2 = char2id(self._text[char_idx + 1])
batch[b] = ch1 * vocabulary_size + ch2
self._cursor[b] = (self._cursor[b] + 1) % self._text_size
return batch
def next(self):
batches = [self._last_batch]
for step in range(self._num_unrollings):
batches.append(self._next_batch())
self._last_batch = batches[-1]
return batches
def bi2str(encoding):
return id2char(encoding // vocabulary_size) + id2char(encoding % vocabulary_size)
def bigrams(encodings):
return [bi2str(e) for e in encodings]
def bibatches2string(batches):
s = [''] * batches[0].shape[0]
for b in batches:
s = [''.join(x) for x in zip(s, bigrams(b))]
return s
bi_onehot = np.zeros((bi_voc_size, bi_voc_size))
np.fill_diagonal(bi_onehot, 1)
def bigramonehot(encodings):
return [bi_onehot[e] for e in encodings]
train_batches = BiBatchGenerator(train_text, 8, 8)
valid_batches = BiBatchGenerator(valid_text, 1, 1)
batch = train_batches.next()
print(batch)
print(bibatches2string(batch))
# print bigramonehot(batch)
print (bibatches2string(train_batches.next()))
print (bibatches2string(valid_batches.next()))
print (bibatches2string(valid_batches.next()))
def logprob(predictions, labels):
"""Log-probability of the true labels in a predicted batch."""
predictions[predictions < 1e-10] = 1e-10
return np.sum(np.multiply(labels, -np.log(predictions))) / labels.shape[0]
def sample_distribution(distribution):
"""Sample one element from a distribution assumed to be an array of normalized
probabilities.
"""
r = random.uniform(0, 1)
s = 0
for i in range(len(distribution)):
s += distribution[i]
if s >= r:
return i
return len(distribution) - 1
def sample(prediction, size=vocabulary_size):
"""Turn a (column) prediction into 1-hot encoded samples."""
p = np.zeros(shape=[1, size], dtype=np.float)
p[0, sample_distribution(prediction[0])] = 1.0
return p
def one_hot_voc(prediction, size=vocabulary_size):
p = np.zeros(shape=[1, size], dtype=np.float)
p[0, prediction[0]] = 1.0
return p
def random_distribution(size=vocabulary_size):
"""Generate a random column of probabilities."""
b = np.random.uniform(0.0, 1.0, size=[1, size])
return b / np.sum(b, 1)[:, None]
def create_lstm_graph_bi(num_nodes, num_unrollings, batch_size, embedding_size=bi_voc_size):
with tf.Graph().as_default() as g:
# input to all gates
x = tf.Variable(tf.truncated_normal([embedding_size, num_nodes * 4], -0.1, 0.1), name='x')
# memory of all gates
m = tf.Variable(tf.truncated_normal([num_nodes, num_nodes * 4], -0.1, 0.1), name='m')
# biases all gates
biases = tf.Variable(tf.zeros([1, num_nodes * 4]))
# Variables saving state across unrollings.
saved_output = tf.Variable(tf.zeros([batch_size, num_nodes]), trainable=False)
saved_state = tf.Variable(tf.zeros([batch_size, num_nodes]), trainable=False)
# Classifier weights and biases.
w = tf.Variable(tf.truncated_normal([num_nodes, bi_voc_size], -0.1, 0.1))
b = tf.Variable(tf.zeros([bi_voc_size]))
# embeddings for all possible bigrams
embeddings = tf.Variable(tf.random_uniform([bi_voc_size, embedding_size], -1.0, 1.0), name='embeddings')
# one hot encoding for labels in
np_embeds = np.zeros((bi_voc_size, bi_voc_size))
np.fill_diagonal(np_embeds, 1)
bigramonehot = tf.constant(np.reshape(np_embeds, -1), dtype=tf.float32, shape=[bi_voc_size, bi_voc_size],
name='bigramonehot')
tf_keep_prob = tf.placeholder(tf.float32, name='tf_keep_prob')
# Definition of the cell computation.
def lstm_cell(i, o, state):
# apply dropout to the input
i = tf.nn.dropout(i, tf_keep_prob)
mult = tf.matmul(i, x) + tf.matmul(o, m) + biases
input_gate = tf.sigmoid(mult[:, :num_nodes])
forget_gate = tf.sigmoid(mult[:, num_nodes:num_nodes * 2])
update = mult[:, num_nodes * 3:num_nodes * 4]
state = forget_gate * state + input_gate * tf.tanh(update)
output_gate = tf.sigmoid(mult[:, num_nodes * 3:])
output = tf.nn.dropout(output_gate * tf.tanh(state), tf_keep_prob)
return output, state
# Input data. [num_unrollings, batch_size] -> one hot encoding removed, we send just bigram ids
tf_train_data = tf.placeholder(tf.int32, shape=[num_unrollings + 1, batch_size], name='tf_train_data')
train_data = list()
for i in tf.split(tf_train_data, num_unrollings + 1, 0):
train_data.append(tf.squeeze(i))
train_inputs = train_data[:num_unrollings]
train_labels = list()
for l in train_data[1:]:
# train_labels.append(tf.nn.embedding_lookup(embeddings, l))
train_labels.append(tf.gather(bigramonehot, l))
# train_labels.append(tf.reshape(l, [batch_size,1])) # labels are inputs shifted by one time step.
# Unrolled LSTM loop.
outputs = list()
output = saved_output
state = saved_state
# python loop used: tensorflow does not support sequential operations yet
for i in train_inputs: # having a loop simulates having time
# embed input bigrams -> [batch_size, embedding_size]
output, state = lstm_cell(tf.nn.embedding_lookup(embeddings, i), output, state)
outputs.append(output)
# State saving across unrollings, control_dependencies makes sure that output and state are computed
with tf.control_dependencies([saved_output.assign(output), saved_state.assign(state)]):
logits = tf.nn.xw_plus_b(tf.concat(outputs, 0), w, b)
loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=logits,
labels=tf.concat(train_labels, 0)
), name='loss')
# Optimizer.
global_step = tf.Variable(0, name='global_step')
learning_rate = tf.train.exponential_decay(10.0, global_step, 500, 0.9, staircase=True, name='learning_rate')
optimizer = tf.train.GradientDescentOptimizer(learning_rate, name='optimizer')
gradients, v = zip(*optimizer.compute_gradients(loss))
gradients, _ = tf.clip_by_global_norm(gradients, 1.25)
optimizer = optimizer.apply_gradients(zip(gradients, v), global_step=global_step)
# here we predict the embedding
# train_prediction = tf.argmax(tf.nn.softmax(logits), 1, name='train_prediction')
train_prediction = tf.nn.softmax(logits, name='train_prediction')
# Sampling and validation eval: batch 1, no unrolling.
sample_input = tf.placeholder(tf.int32, shape=[1], name='sample_input')
saved_sample_output = tf.Variable(tf.zeros([1, num_nodes]), name='saved_sample_output')
saved_sample_state = tf.Variable(tf.zeros([1, num_nodes]), name='saved_sample_state')
reset_sample_state = tf.group(saved_sample_output.assign(tf.zeros([1, num_nodes])),
saved_sample_state.assign(tf.zeros([1, num_nodes])), name='reset_sample_state')
embed_sample_input = tf.nn.embedding_lookup(embeddings, sample_input)
sample_output, sample_state = lstm_cell(embed_sample_input, saved_sample_output, saved_sample_state)
with tf.control_dependencies([saved_sample_output.assign(sample_output),
saved_sample_state.assign(sample_state)]):
sample_prediction = tf.nn.softmax(tf.nn.xw_plus_b(sample_output, w, b), name='sample_prediction')
return g
# test graph
create_lstm_graph_bi(64, 10, 128, 32)
def bitrain(g, num_steps, summary_frequency, num_unrollings, batch_size):
# initalize batch generators
train_batches = BiBatchGenerator(train_text, batch_size, num_unrollings)
valid_batches = BiBatchGenerator(valid_text, 1, 1)
optimizer = g.get_tensor_by_name('optimizer:0')
loss = g.get_tensor_by_name('loss:0')
train_prediction = g.get_tensor_by_name('train_prediction:0')
learning_rate = g.get_tensor_by_name('learning_rate:0')
tf_train_data = g.get_tensor_by_name('tf_train_data:0')
sample_prediction = g.get_tensor_by_name('sample_prediction:0')
# similarity = g.get_tensor_by_name('similarity:0')
reset_sample_state = g.get_operation_by_name('reset_sample_state')
sample_input = g.get_tensor_by_name('sample_input:0')
embeddings = g.get_tensor_by_name('embeddings:0')
keep_prob = g.get_tensor_by_name('tf_keep_prob:0')
with tf.Session(graph=g) as session:
tf.global_variables_initializer().run()
print('Initialized')
mean_loss = 0
for step in range(num_steps):
batches = train_batches.next()
# print bibatches2string(batches)
# print np.array(batches)
# feed_dict = dict()
# for i in range(num_unrollings + 1):
# feed_dict[train_data[i]] = batches[i]
# tf_train_data =
_, l, lr, predictions = session.run([optimizer, loss, learning_rate, train_prediction],
feed_dict={tf_train_data: batches, keep_prob: 0.6})
mean_loss += l
if step % summary_frequency == 0:
if step > 0:
mean_loss = mean_loss / summary_frequency
# The mean loss is an estimate of the loss over the last few batches.
print ('Average loss at step %d: %f learning rate: %f' % (step, mean_loss, lr))
mean_loss = 0
labels = list(batches)[1:]
labels = np.concatenate([bigramonehot(l) for l in labels])
# print predictions
# print labels
# print labels.shape[0]
print('Minibatch perplexity: %.2f' % float(np.exp(logprob(predictions, labels))))
if step % (summary_frequency * 10) == 0:
# Generate some samples.
print('=' * 80)
# print embeddings.eval()
for _ in range(5):
# print random_distribution(bi_voc_size)
feed = np.argmax(sample(random_distribution(bi_voc_size), bi_voc_size))
sentence = bi2str(feed)
reset_sample_state.run()
for _ in range(49):
# prediction = similarity.eval({sample_input: [feed]})
# nearest = (-prediction[0]).argsort()[0]
prediction = sample_prediction.eval({sample_input: [feed], keep_prob: 1.0})
# print prediction
feed = np.argmax(sample(prediction, bi_voc_size))
# feed = np.argmax(prediction[0])
sentence += bi2str(feed)
print(sentence)
print('=' * 80)
# Measure validation set perplexity.
reset_sample_state.run()
valid_logprob = 0
for _ in range(valid_size):
b = valid_batches.next()
predictions = sample_prediction.eval({sample_input: b[0], keep_prob: 1.0})
# print(predictions)
valid_logprob = valid_logprob + logprob(predictions, one_hot_voc(b[1], bi_voc_size))
print('Validation set perplexity: %.2f' % float(np.exp(valid_logprob / valid_size)))
graph = create_lstm_graph_bi(512, 32, 32, 128)
bitrain(graph, 4001, 100, 32, 32)