-
Notifications
You must be signed in to change notification settings - Fork 2
/
transporter_train.py
271 lines (219 loc) · 10.4 KB
/
transporter_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
import os
import time
from datetime import datetime
import numpy as np
import tensorflow as tf
import preprocess
from vision_module import TransporterEncoder
from vision_module import TransporterKeypointer
from vision_module import TransporterDecoder
import ul_loss
from utils import add_sacred_log
from sacred import Experiment
import json
ex = Experiment()
@ex.config
def config():
# Training
learning_rate = 0.0002
decay_rate = 0.9
decay_steps = 30000
batch_size = 64
epochs = 100
env = "mspacman"
loss_to_use = "transporter"
num_keypoints = 7
gauss_std = 0.1 # std-dev of gaussian window around keypoint location
max_patience = 10 # early-stopping param
# Architecture
img_input = "dm_atari"
noise_type = "none" # "vertical", "horizontal", "both", "none"
colour_input = True
# Logging
data_dir = "../mutual_information_keypoints/mini_data/"
gpu = 0
# Eval
eval_split = "test"
@ex.capture
def create_model(colour_input, num_keypoints, gauss_std, loss_to_use):
encoder, keypointer, decoder = None, None, None
if loss_to_use == "transporter":
encoder = TransporterEncoder()
keypointer = TransporterKeypointer(num_keypoints=num_keypoints, gauss_std=gauss_std)
decoder = TransporterDecoder(colour=colour_input)
else:
print("loss type %s not supported" % loss_to_use)
return encoder, keypointer, decoder
@ex.command
def evaluate(data_dir, env, ckpt_load_dir, test_logs_prefix, loss_to_use, noise_type, eval_split,
img_input, colour_input, num_keypoints, gauss_std, batch_size, epoch, _run):
test_inputs, keypoints, heatmaps, x_pred = 0.0, 0.0, 0.0, 0.0
encoder, keypointer, decoder = None, None, None
# setup data pipeline
if img_input == "dm_atari":
eval_dataset = preprocess.deepmind_atari(
data_dir, env, eval_split, loss_to_use, batch_size, noise_type,
colour_input)
else:
raise ValueError("Eval data %s does not exist" % img_input)
# load best ckpt models
if loss_to_use == "transporter":
encoder = TransporterEncoder()
keypointer = TransporterKeypointer(num_keypoints=num_keypoints, gauss_std=gauss_std)
decoder = TransporterDecoder(colour_input)
# FIX: run 1 forward pass over models to make it do weight init
if colour_input:
test_inputs = tf.zeros((batch_size, 84, 84, 3, 2))
if not colour_input:
test_inputs = tf.zeros((batch_size, 84, 84, 1, 2))
_ = ul_loss.transporter_loss(test_inputs, encoder, keypointer, decoder, training=True)
# restore best model weights
encoder.load_weights(ckpt_load_dir + 'encoder-' + str(epoch) + '.h5')
decoder.load_weights(ckpt_load_dir + 'decoder-' + str(epoch) + '.h5')
keypointer.load_weights(ckpt_load_dir + 'keypointer-' + str(epoch) + '.h5')
batch_num = 0
test_recon_loss = 0.0
for x_test in eval_dataset:
batch_num = batch_num + 1
if loss_to_use == "transporter":
keypoints, heatmaps, features, x_pred, loss = ul_loss.transporter_loss(x_test,
encoder, keypointer, decoder, training=False)
test_recon_loss = test_recon_loss + loss
# saving data
if not (os.path.exists(test_logs_prefix)):
# create the directory you want to save to
os.makedirs(test_logs_prefix)
np.savez(test_logs_prefix + "/" + "epoch_" + str(epoch) + "_batch_" +
str(batch_num) + "_keypoints.npz", x_pred, x_test.numpy(), keypoints, heatmaps)
# log test loss
test_recon_loss = test_recon_loss / batch_num
# logging avg. test epoch losses to Sacred
add_sacred_log("test.epoch_recon_loss", float(test_recon_loss.numpy()), _run)
print(" avg. test_nll_loss: %3.4f " % (test_recon_loss.numpy()))
return 0.
@ex.capture
def train(img_input, data_dir, env, batch_size, loss_to_use, decay_steps, decay_rate,
max_patience, colour_input, noise_type, learning_rate, epochs,
checkpoint_prefix, _run):
# setup data pipeline
if img_input == "dm_atari":
train_dataset = preprocess.deepmind_atari(
data_dir, env, "train", loss_to_use, batch_size, noise_type,
colour_input)
valid_dataset = preprocess.deepmind_atari(
data_dir, env, "valid", loss_to_use, batch_size, noise_type,
colour_input)
else:
raise ValueError("Input data %s does not exist" % img_input)
# create models
if loss_to_use == "transporter":
encoder, keypointer, decoder = create_model()
# setting up checkpointing and summaries
lr_decay = tf.keras.optimizers.schedules.InverseTimeDecay(learning_rate,
decay_steps, decay_rate, staircase=True)
optimizer = tf.keras.optimizers.Adam(learning_rate=lr_decay)
def train_step(images, loss_type):
if loss_type == "transporter":
with tf.GradientTape() as tape:
reconstruction_loss = ul_loss.transporter_loss(images,
encoder, keypointer, decoder, training=True)
# update params
model_params = encoder.trainable_variables + keypointer.trainable_variables + decoder.trainable_variables
grads = tape.gradient(reconstruction_loss, model_params)
optimizer.apply_gradients(zip(grads, model_params))
return reconstruction_loss
def test_step(images, loss_type):
if loss_type == "transporter":
keypoints, heatmaps, features, x_hat, loss = ul_loss.transporter_loss(images,
encoder, keypointer, decoder, training=False)
return keypoints, heatmaps, x_hat, loss
# training
best_validation_loss, best_validation_epoch = float("inf"), -1 # val_loss, val_epoch
patience = 0
step = 0
for epoch in range(epochs):
total_recon_loss = 0.0
num_batches = 0
# TRAIN LOOP
start_time_epoch = time.time()
i = 0
for x_train in train_dataset:
start_time = time.time()
loss = train_step(x_train, loss_to_use)
print("batch number: %4d reconstruction_loss: %4.5f took %4.5f s" %
(num_batches, loss.numpy(), time.time() - start_time))
total_recon_loss = total_recon_loss + loss
num_batches += 1
step += 1
# logging train vae and pm losses to Sacred
add_sacred_log("train.step_reconstruction_loss", float(loss.numpy()), _run)
add_sacred_log("train.step", step, _run)
epoch_recon_loss = total_recon_loss / num_batches
batch_per_second = num_batches / (time.time() - start_time_epoch)
# logging avg. epoch losses to Sacred
add_sacred_log("train.epoch_reconstruction_loss", float(epoch_recon_loss.numpy()), _run)
add_sacred_log("train.epoch", epoch, _run)
# VALIDATION LOOP
# end of every epoch compute validation loss and checkpoint models based on that
total_valid_recon_loss = 0.0
valid_num_batch = 0
for x_valid in valid_dataset:
keypoints, heatmaps, x_hat, valid_batch_loss = test_step(x_valid, loss_to_use)
total_valid_recon_loss = total_valid_recon_loss + valid_batch_loss
valid_num_batch = valid_num_batch + 1
epoch_val_recon_loss = total_valid_recon_loss / valid_num_batch
# printing out avg. train end of every epoch
print("end of epoch: %2d avg. train_recon_loss: %3.4f avg. batch/s: %3.4f" % (
epoch, epoch_recon_loss.numpy(), batch_per_second))
# printing out avg.validation losses
print("end of epoch: %2d avg. val_recon_loss: %3.4f batch/s: %3.4f" % (
epoch, epoch_val_recon_loss.numpy(), batch_per_second))
# logging validation_losses to Sacred
add_sacred_log("validation.epoch_nll_loss", float(epoch_val_recon_loss.numpy()), _run)
add_sacred_log("validation.epoch", epoch, _run)
# checkpointing models based on validation loss
validation_loss = epoch_val_recon_loss # epoch_val_nll_loss + epoch_val_kl_loss +
if validation_loss.numpy() < best_validation_loss:
# update best_validation loss
best_validation_loss, best_validation_epoch = validation_loss.numpy(), epoch
encoder.save_weights(checkpoint_prefix + '_encoder-' + str(best_validation_epoch) + '.h5')
decoder.save_weights(checkpoint_prefix + '_decoder-' + str(best_validation_epoch) + '.h5')
keypointer.save_weights(checkpoint_prefix + '_keypointer-' + str(best_validation_epoch) + '.h5')
# early_stopping param resets
patience = 0
# early stopping check
elif validation_loss.numpy() >= best_validation_loss:
patience = patience + 1
# break out if max_patience is reached
if patience == max_patience:
break
print("Training complete!! Best validation loss : %3.4f achieved at epoch: %2d"
% (best_validation_loss, best_validation_epoch))
add_sacred_log("validation.best_val_loss", float(best_validation_loss), _run)
add_sacred_log("validation.best_val_epoch", best_validation_epoch, _run)
return best_validation_loss, best_validation_epoch
@ex.automain
def main(gpu, img_input, noise_type, env, num_keypoints, _config):
if not 'CUDA_VISIBLE_DEVICES' in os.environ:
os.environ['CUDA_VISIBLE_DEVICES'] = str(gpu)
# init folder for logging images/checkpoints
train_dir = os.path.join("transporter_exp", img_input, noise_type, env,
str(num_keypoints), datetime.now().isoformat())
ckpt_prefix = os.path.join(train_dir, "ckpt")
test_logs_prefix = os.path.join(train_dir, "test_logs")
# create dir
if not os.path.exists(train_dir):
os.makedirs(train_dir)
# dump experiment config to json file
flags_json_fn = os.path.join(train_dir, 'flags.json')
with open(flags_json_fn, 'w') as outfile:
json.dump(_config, outfile, indent=4)
print('Wrote config to json file: ', flags_json_fn)
# run train
best_validation_loss, best_validation_epoch = train(checkpoint_prefix=ckpt_prefix)
# ckpt load directory
ckpt_load_dir = train_dir + "/ckpt_" # ckpt indexed from 1 but epochs from 0
# run evaluate
evaluate(ckpt_load_dir=ckpt_load_dir, epoch=best_validation_epoch,
test_logs_prefix=test_logs_prefix)
return best_validation_loss